Invited Review

The Taxane Diterpenoids

Erkan Baloglu and David G. I. Kingston*

Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0212

Received April 16, 1999

The structures of over 350 taxane diterpenoids are classified and presented with information on their plant source, yield, melting point, and optical activity. The biotransformations and biosynthesis of the taxoids are also reviewed.

Introduction

The study of the taxane diterpenoids or taxoids has moved in the last twenty years from being a specialized subfield of natural products chemistry into something of a minor industry. The reason for this is, of course, the fact that the diterpenoid taxol (1), first isolated by Monroe Wall and Mansukh Wani from *Taxus brevifolia* Nutt. (Taxaceae),¹ as its formulated version Taxol,² is an effective anticancer drug for treatment of a variety of human cancers.³ This important discovery has spurred the isolation of many additional taxoids, in part with the hope of finding additional compounds with even better activity than taxol itself, in part as a byproduct of the large scale isolation of taxol for pharmaceutical use, and in part from sheer scientific curiosity.

The scope of this work can be documented by the large number of new compounds that have been isolated in the last six years. Thus in the 136 years between the first isolation of a "taxine" by Lucas⁴ and the completion of the literature survey for our previous review of this subject in 1992,⁵ approximately 100 taxoids had been isolated and characterized. In the seven years since 1992, over 250 additional taxoids have been isolated and characterized. The time is thus ripe for a comprehensive review of these fascinating compounds. This review will cover the structures and the biosynthesis of the taxoids; the chemistry of the taxoids will not be covered in this review, but a separate review covering this area is in preparation.⁶

Several reviews of the structures of the taxoids have appeared over the past few years. In addition to our review

Table 1. Systematics of the Genus Taxus

trivial name	botanical classification
European yew or English yew	<i>Taxus baccata</i> L.
Himalayan yew	T. wallichiana Zucc.
Chinese yew	<i>T. celebica</i> (Warburg) Li
Japanese yew	T. cuspidata Sieb. et Zucc.
Pacific yew	T. brevifolia Nutt.
Mexican yew	T. globosa Schlechtd.
Florida yew	<i>T. floridana</i> Nutt.
Canadian yew	T. canadensis Marsh.,
Ū	T. x media Rehd.,
	T. x hunnewelliana Rehd.

published in 1993,⁵ major comprehensive reviews have been published on the phytochemistry of the yew tree,⁷ on the taxine alkaloids,⁸ on naturally occurring taxoids,⁹ and on the chemical constituents of *Taxus* species.^{10,11} More specialized reviews have appeared on naturally occurring rearranged taxoids,¹² on oxetane-containing taxoids,¹³ on the structure elucidation of taxoids,¹⁴ on the detection and isolation of taxol,¹⁵ on the discovery and structure elucidation of taxol,¹⁶ and on the NMR spectra of taxane diterpenoids.¹⁷ The latter reference proposes several structural revisions of baccatin VI analogues and related compounds to the corresponding 11(15 \rightarrow 1)-*abeo*-taxoids on the basis of their NMR spectra; for the most part these sturctural revisions have already been made by others.¹⁸

Taxonomy

As has been pointed out by Appendino,⁷ the taxonomy of the genus *Taxus* is difficult because yews look very much alike, and there is thus some confusion in the literature over the names of certain yews. In particular the Himalayan yew, *T. wallichiana* Zucc., is sometimes referred to as *T. baccata* L., while the Chinese yew, *T. celebica* (Warburg) Li is often considered as *T. chinensis* Rehd., *T. yunnanesis* Cheng et L. K. Fu, or *T. mairei* (Lemee and Lev.) Hu ex Liu. In this review no attempt has been made to correct or interpret the taxonomy assigned by the authors, and the sources are thus reported as recorded by the original authors. The botanical summary provided by Appendino⁷ is shown in Table 1; the botanical nomenclature follows the Krüssmann classification.¹⁹

Structures of the Taxane Diterpenoids

The structures of the taxane diterpenoids that have been reported in the literature through May 1999 are included

^{*} To whom correspondence should be addressed. Tel.: (540) 231-6570. FAX: (540) 231-7702. E-mail: dkingston@vt.edu.

in this review, together with short notes on any unusual features of chemical interest. The classification is basically the same as that used in our earlier review⁵ but with the addition of new tables to accommodate the new compound types that have been isolated since 1992. Each table gives the structure, name, molecular formula, molecular weight, optical rotation, melting point, plant source, plant part, and yield of each taxoid, insofar as these data are available in the original literature. The following code is used for the plant parts: lv, leaves; st, stems; rt, roots, hw, heartwood; tw, twigs; sd, seeds; cc, cell culture; bk, bark.

The basic structure for most of the taxoids consist of a pentamethyl $[9.3.1.0]^{3,8}$ tricyclopentadecane skeleton (2), which is often called the normal taxane skeleton. Increasing numbers of taxoids with the $11(15 \rightarrow 1)$ *abeo*-taxane skeleton (3) have been found in recent years, and several other skeletons that are obviously related to the normal taxane skeleton by rearrangement are also observed.

The confusion of names used for the taxoids makes the literature unnecessarily complex and confusing. The problem has been well discussed by Appendino,^{7,9} and we echo his plea that the discoverers of new taxoids name their compounds as derivatives of one of the known well-established taxoid structures wherever possible, rather than inventing additional trivial names. To assist this process, following Appendino⁹ we give below the structures of the baccatins and the taxinines whose structures were elucidated in the early days of the study of the taxoids, and whose names are thus well established (**4–18**).

Neutral Taxoids with a C-4(20) Double Bond (Table 2). This class is characterized by an exocyclic 4(20)-double bond and oxygenation at C-5. Oxygenation is also usually observed at C-9 and C-10 and often at C-1, C-2, and C-7. The oxygenated positions may be present either as hydroxyl groups or as acetate or occasionally other esters (Table 2). It has been suggested, primarily on the basis of NMR evidence, that the structures of several members of this class should be revised to the corresponding members of the class of $11(15\rightarrow 1)$ -*abeo*-taxoids with a C-4(20) double bond (Table 10).^{17,18} To minimize confusion, the structures of those compounds which are known to be incorrect are given in Table 1 with a footnote indicating that the structure has been corrected and that the correct structure will be found in Table 10.

Basic Taxoids with a C-4(20) Double Bond (Table 3). This group of taxoids includes taxine B, one of the constituents of the crude "taxine" isolated by Lucas in 1856,⁴ and alkaloidal taxoids with basic properties are referred to collectively as taxine. Taxine is a powerful cardiotoxic agent and is the major toxic constituent of yew.²⁰ 2'-Deacetoxyaustrospicatine was the first basic taxoid isolated from the Himalayan yew, *T. wallichiana.*²¹

(+)-2 α -Acetoxy-2',7-dideacetoxy-1-hydroxyaustrospicatine, a new member of the austrospicatine class of taxoids, isolated from *T. baccata*, was reported earlier as a semisynthetic compound.²² It shows activity as a pyrethroid synergist with the black vine weevil, *Otiorhynchus sulcatus* Fab. (Curculionidae), which is a pest of several food and ornamental crops.

5-Cinnamoyl Taxoids with a C-4(20) Double Bond (**Table 4**). This important class of taxoids includes taxinine and 5-cinnamoyltaxicin I triacetate, two of the first taxoids whose structures were elucidated.^{23,24} The cinnamoyl group can be derived both formally and in practice by elimination of dimethylamine from basic taxoids such as taxine B (Table 3), but it is almost certain that the cinnamoyl compounds also occur naturally since they can be isolated under conditions too mild to bring about elimination from taxine B.

2-*O*-Acetyl-5-*O*-cinnamoyltaxicin I is reported to show fluxional behavior in its NMR spectra, similar to the brevifoliols which contain the $(1\rightarrow15)$ -*abeo*-taxane ring system. The corresponding 2-deacetoxy derivative is rigid. 2α -Deacetyltaxinine J (taxuspinanane G) showed weak cytotoxic activity against murine P-388 lymphocytic cells $(IC_{50} 3.9 \ \mu g/mL).^{25}$

Taxoids with a C-4(20) Double Bond and Oxygenation at C-14 (Table 5). Taxoids with a C-4(20) double bond and oxygenated at C-14 were only discovered relatively recently, and most of them have been found in the Chinese yew, *T. yunnanensis* or *T. chinensis* var. *mairei*. The C-14 hydroxyl group is invariably in the exo (or β) orientation, and C-13 is not oxygenated.

Taxoids with a C-12(16)—**oxido Bridge and a C-4(20) Double Bond (Table 6).** A small group of taxoids has members which are oxygenated at C-16, with the oxygen present as an oxido bridge to C-12. The taxoids 19acetoxytaxagifine and taxezopidine L (Table 6) were recently reported independently and assigned the same structure.²⁶ However, their reported optical rotations are very different, and it is possible that one of the compounds has an alternate structure.

Taxoids with a C-4(20) Epoxide (Table 7). Taxoids of this class are related to baccatin I, one of the first taxoids to be elucidated structurally. The newer members of this group differ primarily in the number and position of acetyl groups on the hydroxyl groups around the periphery of the ring system.

 $1\overline{\beta}$, 9α -Dihydroxy- 4β ,20-epoxy- 2α , 5α , 7β , 10β , 13α -pentaacetoxytax-11-ene and 1β , 7β -dihydroxy- 4β ,20-epoxy- 2α , 5α ,

Table 2. Neutral Taxoids with a C-4(20) Double Bond

name	molecular formula	MW	R_1	R_2	R_3	R ₄	R ₅	R ₆	R ₇	[α] _D	mp (°C)	plant source	plant part; % yield	refs
$5\alpha,9\alpha,10\beta,13\alpha$ -tetrahydroxy-	$C_{20}H_{32}O_4$	336	Н	Н	OH	Н	OH	OH	OH	+134°	195-198	T. baccata	hw	а
4(20), 11-taxadiene $1\beta, 2\alpha, 5\alpha, 9\alpha, 10\beta, 13\alpha$ -hexahydroxy- 4(20), 11-taxadiene	$C_{20}H_{32}O_6$	368	OH	OH	OH	Н	OH	OH	OH	-5.6° (CHCl ₃)	120-121	T. chinensis	st, lv	b
taxezopidine C	$C_{22}H_{32}O_{6}$	392	Η	OH	OH	Η	OAc	OH	=0	+17.3° (CHCla)		T. cuspidata	sd, st; 5.2×10^{-4}	С
taxezopidine D	$C_{22}H_{32}O_6$	392	Η	OH	OH	Н	OH	OAc	=0	$+8.4^{\circ}$ (CHCl ₃)		T. cuspidata	sd, st; 6.3×10^{-4}	с
7-debenzoyloxy-10-deacetyl- brevifoliol	$C_{22}H_{34}O_6$	394	ОН	Η	ОН	Η	OAc	ОН	ОН	-24° (MeOH)	160-162	T. wallichiana	lv	d
taxuyunnanine D	$C_{24}H_{34}O_5$	402	Η	Η	OAc	Η	Н	=0	OAc	-61.0° (CHCl ₃)		T. yunnanensis	rt	е
$9\alpha, 10\beta$ -diacetoxy- $5\alpha, 13\alpha$ - dihydroxy- $4(20), 11$ -taxadiene	$C_{24}H_{36}O_{6}$	420	Н	Η	OH	Н	OAc	OAc	OH	+146°	235	T. baccata	hw; 3.8×10^{-4}	f
										+144.2° (CHCl ₃)	234-236	T. mairei	hw; 3.0×10^{-4}	g
taxuspine G	$C_{24}H_{34}O_7$	434	Н	OH	OH	Н	OAc	OAc	=0	+97° (CHCl ₃)		T. cuspidata	st, lv	h
(2-deacetyltaxinine A)										+147.8° (CHCl ₃)	295-298	T. cuspidata	lv, st	i
2α,5α,9α-trihydroxy-10β,13α- diacetoxytaxa-4(20),11-diene	$C_{24}H_{36}O_7$	436	Η	OH	OH	Н	OH	OAc	OAc		186-188	T. chinensis	lv	j
2,10-di-O-acetyl-5-decinnamoyl- taxicin I	$C_{24}H_{34}O_8$	450	OH	OAc	ОН	Η	OH	OAc	=0	+30° (CHCl ₃)	165	T. baccata	lv	k
$2\alpha,9\alpha$ -diacetoxy- $1\beta,5\alpha,10\beta,13\alpha$ - tetrahydroxytaxa- 4(20) 11-diene	$C_{24}H_{36}O_8$	452	OH	OAc	OH	Н	OAc	OH	OH	-22° (CHCl ₃)	154	T. baccata	lv	1
5α -hydroxy- 9α , 10β , 13α - triacetoxytaxa- $4(20)$, 11 -diene	$C_{26}H_{38}O_7$	462	Η	Η	OH	Н	OAc	OAc	OAc	+266° (CHCla)	204-206	T. mairei	tw	т
13-dehydro-5,13-deacetyl- 2-deacetoxydecinnamoyl taxinine (taxusninanane K)	$C_{26}H_{36}O_8$	476	Н	Н	ОН	OAc	OAc	OAc	=0	+95.2° (CHCl ₃)		T. cuspidata	st; 1.0×10^{-4}	n
taxinine A	$C_{26}H_{36}O_8$	476	Η	OAc	OH	Н	OAc	OAc	=0	+106° (CHCl ₂)	254-255	T. cuspidata	lv	0
										(011013)	254 - 255	T. chinensis	lv;	р
2-deacetyldecinnamoyltaxinine E	$C_{26}H_{38}O_8$	478	Н	OH	ОН	Н	OAc	OAc	OAc	+72° (CHCL)		T. baccata	4.0 × 10 ⁴ lv	k
triacetyl-5-decinnamoyltaxicin I	$C_{26}H_{36}O_9$	492	ОН	OAc	ОН	Н	OAc	OAc	=0	$+54^{\circ}$	206-207	T. baccata	lv	k
(1-hydroxytaxinine A)						~ •	~ .	~ •						ff
7β,9α,10β-triacetoxy-2α,5α,13α- trihydroxy-4(20),11-taxadiene	$C_{26}H_{38}O_9$	494	н	OH	OH	OAc	OAc	OAc	ОН	$+129^{\circ}$ (CHCl ₃)		Austrotaxus spicata	bk; 7.0×10^{-4}	q
1β,7β,9α-trihydroxy-5α,10β,13α- triacetoxytaxa-4(20),11-diene (taxawallin G)	$C_{26}H_{38}O_9$	494	OH	Н	OAc	OH	OH	OAc	OAc		270	T. wallichiana	lv	r
$5\alpha,9\alpha,10\beta,13\alpha$ -tetraacetoxy- 4(20) 11-taxadiene (taxusin)	$C_{28}H_{40}O_8$	504	Н	Η	OAc	Н	OAc	OAc	OAc	+111°	126	T. baccata	hw; 1.3×10^{-1}	f
										+120° (CHCl»)	129-131	T. baccata	hw	s
										+95° (MeOH)	124-126	T. mairei	hw	t
										$+168^{\circ}$ (CHCl ₃)	124-126	T. mairei	hw; 5×10^{-2}	g
										(3)	131-132	T. cuspidata	hw; 4.0×10^{-1}	и
taxinine H	$C_{29}H_{38}O_9$	518	Η	OAc	OAc	Н	OAc	OAc	=0	+96° (CHCl»)	166-167	T. cuspidata	lv	0
2-deacetoxy-5-decinnamoyl taxinine J	$C_{28}H_{40}O_9$	520	Н	Η	ОН	OAc	OAc	OAc	OAc	$+112.9^{\circ}$ (CHCl ₃)	178-180	T. yunnanensis	bk	V
										+114° (MeOH)	188-190	T. wallichiana	bk; 2.0×10^{-2}	W
										$+113^{\circ}$ (CHCl ₃)	185-187	T. baccata	lv	k
decinnamoyltaxinine E	$C_{28}H_{40}O_9$	520	Η	OAc	ОН	Н	OAc	OAc	OAc	+33.8° (CHCl ₂)		T. chinensis	sd; 2.8×10^{-3}	X
taxa-4(20),11-diene-5 α -hydroxy- 1 β .7 β .9 α .10 β -tetraacetate	$C_{28}H_{40}O_9$	520	OAc	Η	OH	OAc	OAc	OAc	Н	(013)		T. baccata	rt	у
taxuspine F	$C_{28}H_{38}O_{10}$	534	Н	OAc	OH	OAc	OAc	OAc	=0	+50° (CHCl ₃)		T. cuspidata	st, lv; 1.0×10^{-3}	Z

Table 2. (Continued)

name	molecular formula	MW	R_1	R_2	R_3	R_4	R_5	R_6	R ₇	[α] _D	mp (°C)	plant source	plant part; % yield	refs
$2\alpha,5\alpha$ -dihydroxy- $7\beta,9\alpha,10\beta,13\alpha$ - tetraacetoxy- $4(20),11$ - taxadiene	$C_{28}H_{40}O_{10}$	536	Н	OH	OH	OAc	OAc	OAc	OAc	+53° (CHCl ₃)		Austrotaxus spicata	$\begin{array}{l} lv;\\ 4.4\times10^{-4} \end{array}$	aa
taxezopidine F	$C_{28}H_{40}O_{10}$	536	Η	OAc	OH	OAc	OAc	OAc	OH	-13.4° (CHCl ₃)		T. cuspidata	sd, st; 2.8×10^{-4}	С
2α -(α -methylbutyryl)oxy- 5α , 7β , 10β -triacetoxy- 4(20), 11 -taxadiene	$C_{31}H_{46}O_8$	546	Η	а	OAc	OAc	Н	OAc	Н	+45°	115	T. baccata	hw; 2.0×10^{-3}	f
										+46.1° (CHCl ₂)	114-116	T. mairei	hw; 7.7×10^{-5}	bb
2α -benzoyloxy- 9α , 10β -diacetoxy- 1β , 5α , 13α -trihydroxy-4(20), 11- taxadiene	$C_{31}H_{40}O_9$	556	OH	OBz	OH	Н	OAc	OAc	OH	+5° (CHCl ₃)	196-197	T. chinensis	st, lv	b
5α -hydroxy- 2α -(α -methylbutyryl)- oxy- 7β , 9α , 10β -triacetoxy- 4(20),11-taxadiene	$C_{31}H_{46}O_9$	562	Η	а	OH	OAc	OAc	OAc	Н	+63°	227-229	T. baccata	hw; 1.2×10^{-3}	f
$2\alpha, 5\alpha, 9\alpha, 10\beta, 13\alpha$ -pentaacetoxy- 4(20), 11-taxadiene	$C_{30}H_{42}O_{10}$	562	Н	OAc	OAc	Н	OAc	OAc	OAc	+46°	165	T. baccata	hw; 3.5×10^{-4}	f
$5\alpha,7\beta,9\alpha,10\beta,13\alpha$ -pentaacetoxy- 4(20),11-taxadiene	$C_{30}H_{42}O_{10}$	562	Η	Н	OAc	OAc	OAc	OAc	OAc	+92°	205-207	T. baccata	hw; 1.4×10^{-3}	f
										+90.8° (CHCl ₃)	205-207	T. mairei	hw; 2.2×10^{-4}	bb
5α-hydroxy-2α,7β,9α,10β,13α- tetraacetoxy-4(20),11- taxadiene	$C_{30}H_{42}O_{12}$	578	Η	OAc	OH	OAc	OAc	OAc	OAc	+35° (CHCl ₃)	242-244	T. brevifolia	bk; 2.7×10^{-4}	сс
(decinnamoyl taxinine J)												Austrotaxus	lv; 2.6×10^{-4}	аа
decinnamoyl-1-hydroxy-	$C_{30}H_{42}O_{12}$	594	OH	OAc	OH	OAc	OAc	OAc	OAc	+44° (CHCla)	213	T. baccata	lv	k
13-acetylbrevifoliol	$C_{33}H_{42}O_{10}$	598	OH	Н	OH	OBz	OAc	OAc	OAc	$+8^{\circ}$		T. wallichiana		d
2α-benzoyloxy-9α,10β,13α- triacetoxy-1β,5α-dihydroxy- 4(20).11-taxadiene	$C_{33}H_{42}O_{10}$	598	OH	OBz	ОН	Н	OAc	OAc	OAc	+67.7° (CHCl ₃)	155-157	T. chinensis	st, lv	b
brevifoliol 2α -(α -methylbutyryl)oxy- 5α , 7β , 9α , 10β -tetraacetoxy- 4(20) 11-taxadiene	$\begin{array}{c} C_{33}H_{42}O_{10} \\ C_{33}H_{48}O_{10} \end{array}$	598 604	OH H	H a	OH OAc	OAc OAc	OAc OAc	OBz OAc	OH H	+56°	155-156	T. brevifolia T. baccata	$ \begin{array}{l} lv \\ hw; \\ 8.0 \times 10^{-4} \end{array} $	dd f
2α-acetoxybrevifoliol	$C_{33}H_{42}O_{11}$	614	OH	OAc	ОН	OBz	OAc	OAc	ОН	-24° (CHCl ₃)	198	T. baccata	sd	ee

^a Chan, W. R.; Halsall, T. G.; Hornby, G. M.; Oxford, A. W.; Sabel, W.; Bjamer, K.; Ferguson, G.; Robertson, J. M. Chem. Commun. 1966, 923-925. ^bJia, Z. J.; Zhang, Z. P. Chin. Sci. Bull. 1991, 36, 1174-1176. Structure revision to the corresponding 11(15→1)-abeotaxoid has been suggested: Huang, K.; Liang, J.; Gunatilaka, A. A. L. J. Chin. Pharm. University (Zhongguo Yaoke Daxue Xuebao) 1998, 29, 259–266. Wang, X.-X.; Shigemori, H.; Kobayashi, J. J. Nat. Prod. 1998, 61, 474–479. ^aBarboni, L.; Pierluigi, G.; Torregiani, E.; Appendino, G.; Gabetta, B.; Zini, G.; Bombardelli, E. Phytochemistry 1993, 33, 145-150. Structure should be revised to the corresponding 11(15-1)-abeo-taxoid; see Table 10 and: Appendino, G.; Barboni, L.; Gariboldi, P.; Bombardelli, E.; Gabetta, B.; Viterbo, D. J. Chem. Soc., Chem. Commun. 1993, 1587–1589. ^eZhang, H.; Takeda, Y.; Minami, Y.; Yoshida, K.; Matsumoto, T.; Xiang, W.; Mu, O.; Sun, H. Chem. Lett. 1994, 957–960. ^fDella Casa de Marcano, D. P.; Halsall, T. G. Chem. Commun. 1969, 1282–1283. ^gLiu, C.-L.; Lin, Y.-C.; Lin, Y.-M.; Chen, F.-C. Taiwan Kexue 1984, 38, 119–125. ^hKobayashi, J.; Inubushi, A.; Hosoyama, H.; Yoshida, N.; Sasaki, T.; Shigemori, H. *Tetrahedron* **1995**, *51*, 5971–5978. Tong, X.-J.; Fang, W.-S.; Zhou, J.-Y.; He, C.-H.; Chen, W.-M.; Fang, Q.-C. J. Nat. Prod. **1995**, *58*, 233–238. /Zhang, Z. P.; Wiedenfeld, H.; Roder, E. Phytochemistry **1995**, *38*, 667–670. ^kBarboni, L.; Gariboldi, P.; Appendino, G.; Enriu, R.; Gabetta, B.; Bombardelli, E. *Liebigs Ann.* **1995**, 345–349. ⁷Appendino, G.; Ozen, H. C.; Gariboldi, P.; Gabetta, B.; Bombardelli, E. *Fitoterapia* **1992**, *64*(S1), 47–51. ^mYang, S.-J.; Fang, J.-M.; Cheng, Y.-S. *Phytochemistry* **1996**, *43*, 839–842. ⁿMorita, H.; Gonda, A.; Wei, L.; Yamamura, Y.; Wakabayashi, H.; Takeya, K.; Itokawa, H. Phytochemistry 1998, 48, 857–862. Chiang, H. C.; Woods, M. C.; Nakadaira, Y.; Nakanishi, K. Chem. Commun. 1967, 1201-1202. PChiang, H. C. Shih Ta Hsueh Pao 1975, 20, 147-50. "Ettouati, L.; Ahond, A.; Convert, O.; Poupat, C.; Potier, P. Bull. Soc. Chim. Fr. 1989, 5, 687-694. 'Zhang, J. Z.; Fang, Q. C.; Liang, X. T.; Kong, M.; He, W. Y. *Chin. Chem. Lett.* **1995**, *6*, 967–970. ^sErdtman, H.; Tsuno, K. *Phytochemistry* **1969**, *8*, 931–932. 'Ho, T.-I.; Lee, G.-H.; Peng, S.-M.; Yeh, M.-K.; Chen, F.-C.; Yang, W.-L. Acta Crystallogr. Sect. C **1987**, *43*, 1378–1380. "Miyazaki, M.; Kazumasa, S.; Mishima, H.; Kurabayashi, M. *Chem. Pharm. Bull.* **1968**, *16*, 546–548. "Chen, W. M.; Zhang, P. L.; Zhou, J. Y. *Yaoxue Xuebao* **1994**, *29*, 207–214. "Chattopadhyay, S. K.; Sharma, R. P. *Phytochemistry* **1995**, *39*, 935–936. "Chen, Y.-J.; Chen, C.-Y.; Shen, Y.-C. J. Nat. Prod. **1999**, *62*, 149–151. "Topcu, G.; Sultana, N.; Akhtar, F.; Habib-ur-Rehman; Hussain, T.; Choudhary, M. I.; Atta-ur-Rahman. Nat. Prod. Lett. 1994, 4, 93–100. Kobayashi, J.; Inubushi, A.; Hosoyama, H.; Yoshida, N.; Sasaki, T.; Shigemori, H. *Tetrahedron* **1995**, *51*, 5971–5978. ^{aa}Ettouati, L.; Ahond, A.; Convert, O.; Laurent, D.; Poupat, C.; Potier, P. Bull. Soc. Chim. Fr. **1988**, 749. ^{bb}Yeh, M.-K.; Wang, J.-S.; Lui, L.-P.; Chen, F.-C. *J. Chin. Biochem.* Soc. 1988, 35, 304-313. "Kingston, D. G. I.; Hawkins, D. R.; Ovington, L. J. Nat. Prod. 1982, 45, 466-470. ddChu, A.; Furlan, M.; Davin, L. B.; Zajicek, J.; Towers, G. H. N.; Soucy-Breau, C. M.; Rettig, S. J.; Croteau, R.; Lewis, N. G. Phytochemistry 1994, 36, 975-985. Structure should be revised to the corresponding 11(15→1)-abeo-taxoid; see Table 10 and: Appendino, G.; Barboni, L.; Gariboldi, P.; Bombardelli, E.; Gabetta, B.; Viterbo, D. J. Chem. Soc., Chem. Commun. 1993, 1587–1589. eeAppendino, G.; Tagliapietra, S.; Ozen, H.-C.; Gariboldi, P.; Gabetta, B.; Bombardelli, E. J. Nat. Prod. 1993, 56, 514-520. Structure should be revised to the corresponding 11(15-1)-abeo-taxoid; see Table 10 and: Appendino, G.; Barboni, L.; Gariboldi, P.; Bombardelli, E.; Gabetta, B.; Viterbo, D. J. Chem. Soc., Chem. Commun. 1993, 1587–1589. ^{ff}Tong, X.-J.; Liu, Y.-C.; Chang, C.-J. Nat. Prod. Lett. 1995, 6, 197–202.

 9α , 10β , 13α -pentaacetoxytax-11-ene provided the first examples of intramolecular transesterification in this family of taxane metabolites, and were found to isomerize readily via acyl migration between C-7 and C-9 under mild acid-catalyzed conditions, even when standing in CDCl₃.²⁷

Taxoids with an Oxetane Ring (Table 8). Taxoids of this group are related to baccatin III, important as the diterpenoid portion of taxol. Although most of them are substituted with the usual acetyl and benzoyl groups, some of them have more interesting esterification patterns with,

Table 3. Basic Taxoids with a C-4(20) Double Bond

name	molecular formula	MW	R_1	R ₂	R_3	R_4	R ₅	R ₆	R_7	R ₈	[α] _D	mp (°C)	plant source	plant part; % yield	refs
2-deacetoxy-9-acetoxytaxine B 2-deacetoxy-10-acetyltaxine B taxine B	$\begin{array}{c} C_{33}H_{45}NO_7\\ C_{33}H_{45}NO_7\\ C_{33}H_{45}NO_8 \end{array}$	567 567 583	H H OH	OH OH OAc	H H H	OAc OH OH	H Ac H	=0 =0 =0	H H H	Me Me Me	+116°	115	T. baccata T. baccata T. baccata	lv lv lv	a a b
											(CH_3OH) +119° $(CHCl_3)$	113	T. baccata	lv	c, d
													T. chinensis	sd; 6.3×10^{-4}	е
13-deoxo-13α-acetyloxy- 1-deoxynortaxine B	$\mathrm{C}_{34}\mathrm{H}_{47}\mathrm{NO}_8$	597	Η	ОН	Н	ОН	Ac	OAc	Н	Н	+76° (CH ₂ Cl ₂)	165	T. baccata	lv; 2.1×10^{-2}	f
13-deoxo-13α-acetyloxy- 1-deoxytaxine B	$C_{35}H_{49}NO_8$	611	Η	OH	Η	OH	Ac	OAc	Н	Me	$+25^{\circ}$ (CH ₂ Cl ₂)	192	T. baccata	$lv;$ 2.5 \times 10^{-2}	f
10-acetoxytaxine B	C ₃₅ H ₄₇ NO ₉	625	OH	OAc	Н	OH	Ac	=0	Н	Me			T. baccata	lv	а
9-acetoxytaxine B	$C_{35}H_{47}NO_9$	625 627	OH	OAc	н н	OAc OH	H Ac	=0	Н Н	Me Me	+42°	119	T. baccata T. baccata	lv lv	a f
taxine B	03511491009	021	011	011	11	011	л	OAt	11	IVIC	(CH_2Cl_2)	115	1. Dattata	2.0×10^{-2}	1
$2'\beta$, 7β , 9α -trisdeacetyl- austrospicatine	$C_{35}H_{49}NO_9$	627	Η	Η	ОН	ОН	Ac	OAc	ОН	Me	+41° (CHCl ₃)		A. spicata	$\begin{array}{l} lv;\\ 4.1\times10^{-4} \end{array}$	g
7,2'-didesacetoxy-	$C_{37}H_{51}NO_8$	637	Н	Η	Η	OAc	Ac	OAc	Η	Me	$+112.93^{\circ}$	199-200	T. walli-	bk	h, i
taxuspine Z	$C_{37}H_{51}NO_9$	653	Н	OH	Н	OAc	Ac	OAc	Н	Me	$(CHCI_3)$ +31.2° $(CHCI_2)$		T. cuspidata	st	j
											(011013)		T. chinensis	sd; 1.4×10^{-3}	е
comptonine	C ₃₇ H ₄₉ NO ₁₀	667	Η	Η	OAc	OAc	Ac	=0	ОН	Me	+85° (CHCl ₃)		A. spicata	bk; 1.7×10^{-4}	k
2'-hydroxytaxine II	C ₃₇ H ₄₉ NO ₁₀	667	Η	OAc	Η	OAc	Ac	=0	OH	Me			T. cuspidata	$\begin{array}{l} lv;\\ 2.6\times10^{-2} \end{array}$	1
7β ,9 α -bisdeacetyl- austrospicatine	C ₃₇ H ₅₁ NO ₁₀	669	Η	Η	ОН	ОН	Ac	OAc	OAc	Me	+41° (CHCl ₃)		A. spicata	$lv; \\ 1.1 \times 10^{-3}$	g
2α-acetoxy-2',7-dideacetoxy- austrospicatine	C ₃₉ H ₅₃ NO ₁₀	695	Н	OAc	Η	OAc	Ac	OAc	Н	Me	+33.7° (CHCl ₃)		T. chinensis	sd; 1.3×10^{-3}	е
$2'\beta$ -deacetoxyaustrospicatine	C ₃₉ H ₅₃ NO ₁₀	695	Η	Η	OAc	OAc	Ac	OAc	Н	Me	+71° (CH ₂ Cl ₂)		A. spicata	$lv; \\ 7.4 \times 10^{-4}$	g
											$+117^{\circ}$		T. walli-	bk, lv	т
13-deoxo-13α-acetyloxy- 7β.9α-diacetyl-1.2-	C ₃₉ H ₅₃ NO ₁₀	695	Н	Н	OAc	OAc	Ac	OAc	Н	Me	$(CHCI_3)$ +76.9° (MeOH)	162-164	T. baccata	bk	n
dideoxytaxine B (+)- 2α -acetoxy- $2'$,7-dideacetoxy-	C ₃₉ H ₅₃ NO ₁₁	711	ОН	OAc	н	OAc	Ac	OAc	н	Me	+60°		T. baccata	lv	0
1-hydroxyaustrospicatine $2'\beta$ -deacetylaustrospicatine	C ₃₉ H ₅₃ NO ₁₁	711	Н	Н	OAc	OAc	Ac	OAc	ОН	Me	$(CHCI_3)$ +56° $(CHCI_2)$	298-300	A. spicata	lv;	g
2α-hydroxy-2'β-deacetoxy- austropicatine	C ₃₉ H ₅₃ NO ₁₁	711	Η	ОН	OAc	OAc	Ac	OAc	Н	Me	$(CH_2CI_2) +50^{\circ}$ (CHCl ₂)		A. spicata	1.6×10^{-3}	g
7β -deacetylaustrospicatine	C ₃₉ H ₅₃ NO ₁₁	711	Н	Н	OH	OAc	Ac	OAc	OAc	Me	$+41^{\circ}$		A. spicata	lv; 2.2 × 10 ⁻⁴	g
austrospicatine	$C_{41}H_{55}NO_{12}$	753	Н	Η	OAc	OAc	Ac	OAc	OAc	Me	$+52^{\circ}$ (CH ₂ Cl ₂)		A. spicata	lv; 5.6×10^{-3}	g
2α -acetoxy- $2'\beta$ -deacetyl- austrospicatine	C ₄₁ H ₅₅ NO ₁₃	769	Η	OAc	OAc	OAc	Ac	OAc	ОН	Me	+19° (CHCl ₃)		A. spicata	lv; 3.1×10^{-3}	g
2α-acetoxy-2'-deacetyl-1- hydroxyaustrospicatine	C ₄₁ H ₅₅ NO ₁₄	785	OH	OAc	OAc	OAc	Ac	OAc	ОН	Me	$+42^{\circ}$ (CHCl ₃)	120	T. baccata	,	р
2α -acetoxyaustrospicatine	C43H57NO14	811	Η	OAc	OAc	OAc	Ac	OAc	OAc	Me	+37° (CHCl ₃)		A. spicata	lv; 1.3×10^{-3}	g

^a Jenniskens, L. H. D.; van Rosendaal, E. L. M.; van Beek, T. A. J. Nat. Prod. **1996**, 59, 117–123. ^bCalled taxine I by the original authors: Baxter, J. N.; Lythgoe, B.; Scales, B.; Trippett, S. Proc. Chem. Soc. **1958**, 9–10. Structural revision by: Ettouati, L.; Ahond, A.; Poupat, C.; Potier, P. J. Nat. Prod. **1991**, 54, 1455–1458. Graf, E. Arch. Pharm. (Weinheim, Ger.) **1958**, 291, 443–449. ^dGraf, E.; Weinandy, S.; Koch, B.; Breitmaier, E. Liebigs Ann. Chem. **1986**, 1147–1151. ^cChen, Y.-J.; Chen, C.-Y.; Shen, Y.-C. J. Nat. Prod. **1999**, 62, 149–151. ^fAppendino, G.; Ozen, H. C.; Fenoglio, I.; Gariboldi, P.; Gabetta, B.; Bombardelli, E. Phytochemistry **1993**, 33, 1521–1523. ^gEttouati, L.; Ahond, A.; Convert, O.; Laurent, D.; Poupat, C.; Potier, P. Bull. Soc. Chim. Fr. **1988**, 749–755. ^hZhang, J. Z.; Fang, Q. C.; Liang, X. T.; He, C. H. Chin. Chem. Lett. **1994**, 5, 497–500. ^fZhang, J.-Z.; Fang, Z.-C.; Liang, X.-T.; He, C.-H.; Kong, M.; He, W.-Y.; Jin, X.-L. Phytochemistry **1995**, 40, 881–884. ^fShigemori, H.; Wang, X.-X.; Yoshida, N.; Kobayashi, J. Chem. Pharm. Bull. **1997**, 45, 1205–1208. ^kEttouati, L.; Ahond, A.; Convert, O.; Poupat, C.; Potier, P. Bull. Soc. Chim. Fr. **1989**, 5, 687–694. ^lAndo, M.; Sakai, J.; Zhang, S.; Watanabe, Y.; Kosugi, K.; Suzuki, T.; Hagiwara, H. J. Nat. Prod. **1997**, 60, 499–501. ^mChattopadhyay, S. K.; Kulshrestha, M. K.; Saha, G. C.; Sharma, R. P.; Kumar, S. Indian J. Chem. **1996**, 35B, 508–509. ⁿGuo, Y.; Diallo, B.; Jaziri, M.; Vanhalen-Fastre, R.; Vanhalen, M.; Ottinger, R. J. Nat. Prod. **1995**, 58, 1906–1912. ^eDoss, R. P.; Carney, J. R.; Shanks, C. H., Jr.; Williamson, R. T.; Chamberlain, J. D. J. Nat. Prod. **1997**, 60, 1130–1133. ^pBarboni, L.; Gariboldi, P.; Appendino, G.; Enriu, R.; Gabetta, B.; Bombardelli, E. Liebigs Ann. **1995**, 345–349.

Table 4. 5-Cinnamoyl Taxoids with a C-4(20) Double Bond

name	molecular formula	MW	R ₁	R ₂	R3	R4	R 5	R ₆	[α] _D	mp (°C)	plant source	plant part; % vield	refs
<i>O</i> -cinnamoyltaxicin I	C ₂₉ H ₃₆ O ₇	496	OH	OH	H	OAc	OH	=0	+285°	233-234	T. baccata	lv	a
5-cinnamoyl-10- acetyltaxicin II	C ₃₁ H ₃₈ O ₇	522	Н	ОН	Н	ОН	OAc	=0	$(CHCl_3)$ +128° $(CHCl_2)$	204-205	T. baccata	lv	b
2-O-acetyl-5-O-cinnamoyl	$C_{31}H_{38}O_8$	538	OH	OAc	Н	OH	OH	=0	$+182^{\circ}$	152 - 154	T. baccata	lv	С
5-cinnamoyl-10- acetyltaxicin I	$C_{31}H_{38}O_8$	538	OH	OH	Н	OH	OAc	=0	(CH_2CI_2) +185° (CHCl ₃)	145	T. baccata	lv	b
taxezopidine E	$C_{31}H_{38}O_8$	538	Η	OH	OH	OH	OAc	=0	$+24^{\circ}$		T. cuspidata	sd, st; 3.6 \times 10 ⁻⁴	d
2-deacetoxy-7,9- dideacetyltaxinine J	$C_{33}H_{42}O_8$	566	Н	Н	OH	OH	OAc	OAc	$+82^{\circ}$ (CHCl ₃)	238-240	T. chinensis	bk; 1.1×10^{-4}	е
5α -cinnamoyloxy- 2α , 13α , dihydroxy- 9α , 10β -diacetoxy-	$C_{33}H_{46}O_8$	570	Η	OH	Н	OAc	OAc	OH	+4° (CHCl ₃)	104-106	T. chinensis	$lv,st;$ 4.0×10^{-4}	f
4(20),11-taxadiene 5-cinnamoyl-9,10- diagetyltaxiain I	$C_{33}H_{40}O_9$	580	OH	ОН	Н	OAc	OAc	=0		185	T. baccata	lv	g
5α -cinnamoyloxy- 9α , 10β , 13α - triacetoxytaxa-4(20), 11 -	$C_{35}H_{44}O_8$	592	Н	Н	Н	OAc	OAc	OAc	+118.5° (CHCl ₉)	165-166	T. mairei	hw	h
ulene										175-177	T. chinensis	lv, st; $2.5 imes 10^{-4}$	f
2-deacetoxytaxinine B	$C_{35}H_{42}O_9$	606	Η	Η	OAc	OAc	OAc	=0	+71.7° (CHCl ₂)	240	T. wallichiana	lv, tw; 1 7 × 10 ⁻³	i
taxinine (<i>O</i> -cinnamoyltaxicin II triacetate)	$C_{35}H_{42}O_9$	606	Н	OAc	Н	OAc	OAc	=0	$+137^{\circ}$ (CHCl ₃)	265-267	T. baccata	lv	a, j, k
									+128° (CHCl ₃)	266-267	T. chinensis	lv; 1.0×10^{-3}	1
										264-265	T. cuspidata	lv; 8.8 × 10^{-2}	т, п
										237-239	T. mairei	hw; 10^{-4}	0
5 α -(cinnamoyl)oxy- 7 β -hydroxy-9 α ,10 β ,13 α - triacetoxytaxa-4(20),11-	$C_{35}H_{44}O_9$	608	Н	Н	ОН	OAc	OAc	OAc	+20° (CHCl ₃)		T. mairei	4.0 × 10 tw	р
taxezopidine G	$C_{35}H_{44}O_9$	608	Н	OH	Н	OAc	OAc	OAc	+25.2°		T. cuspidata	sd, st;	d
taxezopidine H	$C_{35}H_{44}O_9$	608	Н	Н	OAc	OAc	OAc	ОН	$(CHCl_3)$ +5.6 $(CHCl_2)$		T. cuspidata	1.5×10^{-4} sd, st; 1.4×10^{-4}	d
5α-cinnamoyloxy-10β- hydroxy-2α,9α,13α- triacetoxytaxa-4(20),11- diene	$C_{35}H_{48}O_9$	612	Н	OAc	Н	OAc	ОН	OAc	(CHCl ₃) +29.6° (CHCl ₃)	110-112	T. chinensis	lv, st	f
<i>O</i> -cinnamoyltaxicin I triacetate	$C_{35}H_{42}O_{10}$	622	OH	OAc	Н	OAc	OAc	=0	+218° (CHCl ₃)	237-239	T. baccata	lv	а
											T. cuspidata	m lv; $ m 8.0 imes 10^{-4}$	т
10-deacetyltaxinine B	$C_{35}H_{42}O_{10}$	622	Η	OAc	OAc	OAc	OH	=0	+45.2° (CHCl ₃)	245-248	T. cuspidata	lv, tw;	<i>q, r</i>
5α -cinnamoyloxy- 2α , 9α , 10β , 13α -tetraacetoxy- 4(20),11-taxadiene	C ₃₇ H ₄₆ O ₁₀	650	Н	OAc	Н	OAc	OAc	OAc	+225° (CHCl ₃)	231-233	T. mairei	hw; 3.1×10^{-4}	S
(taxinine E) 2-deacetoxytaxinine J	C37H46O10	650	Н	Н	OAc	OAc	OAc	OAc	+50°	171-172	T. cuspidata T. mairei	lv bk	n t
taxinine B	$C_{37}H_{44}O_{11}$	664	Н	OAc	OAc	OAc	OAc	=0	(acetone) +93.8°	265-266	T. cuspidata	lv	п
(7 β -acetate-O-taxinine A)									$(CHCl_3)$ +84.4°	261-262	T. mairei	hw;	S
2α -deacetyltaxinine J	$C_{37}H_{46}O_{11}$	666	Н	OH	OAc	OAc	OAc	OAc	$(CHCI_3)$ -54.9°		T. cuspidata	st	u
(taxuspinanane G) 1-hydroxy-2-deacetoxy- taxinine I	C ₃₇ H ₄₆ O ₁₁	666	OH	Н	OAc	OAc	OAc	OAc	$(CHCI_3)$ +64.0° $(CHCI_2)$	112-114	T. wallichiana	bk	V
(taxawallin A)									$+60.45^{\circ}$ (CHCl ₃)	112-114	T. wallichiana	lv	W
2α -benzoyloxy- 5α - cinnamoyloxy- 9α , 10β - diacetoxy- 1β , 13α -	$C_{40}H_{46}O_{10}$	686	OH	OBz	Н	OAc	OAc	ОН	+6.5° (CHCl ₃)	212-214	T. chinensis	st, lv;	х, у, z

dihydroxy-4(20),11taxadiene

Table 4.	(Continued)
----------	-------------

name	molecular formula	MW	R_1	R_2	R_3	R_4	R_5	R ₆	[α] _D	mp (°C)	plant source	plant part; % yield	refs
taxinine J	$C_{39}H_{48}O_{12}$	708	Н	OAc	OAc	OAc	OAc	OAc	+36° (CHCl ₃)	248-249	T. mairei	hw; $2.7 imes 10^{-3}$	aa
										249 - 251	T. cuspidata	lv	t
										248-249	T. mairei	bk; $5.0 imes10^{-3}$	bb
									+137.1° (CHCl ₃)	284-286	T. chinensis	bk; $2.0 imes 10^{-4}$	сс

^a Baxter, J. N.; Lythgoe, B.; Scales, B.; Scrowston, R. M.; Trippett, S. J. Chem. Soc. 1962, 2964–2971. ^bAppendino, G.; Gariboldi, P.; Pisetta, A.; Bombardelli, E.; Gabetta, B. Phytochemistry 1992, 31, 4253-4257. Appendino, G.; Ozen, H. C.; Gariboldi, P.; Gabetta, B.; Bombardelli, E. Fitoterapia 1992, 64(S1), 47-51. dWang, X.-X.; Shigemori, H.; Kobayashi, J. J. Nat. Prod. 1998, 61, 474-479. Liang, J.-Y.; Huang, K.-S.; Gunatilaka, A. A. L. Planta Med. 1998, 64, 187–188. [#]Zhang, Z.; Jia, Z. Phytochemistry 1991, 30, 2345–2348. Appendino, G.; Cravotto, G.; Enriu, R.; Jakupovic, J.; Gariboldi, P.; Gabetta, B.; Bombardelli, E. Phytochemistry 1994, 36, 407-411. ^hYeh, M.-K.; Wang, J.-S.; Liu, L.-P.; Chen, F.-C. Phytochemistry 1988, 27, 1534–1536. Shrestha, T. B.; Chetri, S. K. K.; Banskota, A. H.; Manandhar, M. D. J. Nat. Prod. 1997, 60, 820-821. JDukes, M.; Etre, D. H.; Harrison, J. W.; Scrowston, R. M.; Lythgoe, B. J. Chem. Soc. C 1967, 448-452. Kurono, M.; Nakadaira, Y.; Onuma, S.; Sasaki, K.; Nakanishi, K. Tetrahedron Lett. 1963, 30, 2153-2160. Chiang, H. C. Shih Ta Hsueh Pao 1975, 20, 147–50. ^mChiang, H. C.; Woods, M. C.; Nakadaira, Y.; Nakanishi, K. Chem. Commun. 1967, 1201–1202. ¹⁷Woods, M. C.; Chiang, H. C.; Nakadaira, Y.; Nakanishi, K. J. Am. Chem. Soc. 1968, 90, 522. ^eLiu, C.-L.; Lin, Y.-C.; Lin, Y.-M.; Chen, F.-C. Tai wan Ko'hsueh 1984, 38, 119–125. PYang, S.-J.; Fang, J.-M.; Cheng, Y.-S. Phytochemistry 1996, 43, 839–842. Tong, X. J.; Fang, W. S.; Zhou, J. Y.; He, C. H.; Chen, W. M.; Fang, Q. C. Yaoxue Xuebao 1994, 29, 55–60. 'Tong, X. J.; Fang, W. S.; Zhou, J. Y.; He, C. H.; Chen, W. M.; Fang, Q. C. Chin. Chem. Lett. 1993, 4, 887-890. Yeh, M.-K.; Wang, J.-S.; Lui, L.-P.; Chen, F.-C. J. Chin. Biochem. Soc. 1988, 35, 309–313. Liang, J.; Min, Z.; Niwa, M. J. Huaxue Zuebao 1988, 46, 1053–1054. "Morita, H.; Gonda, A.; Wei, L.; Yamamura, Y.; Wakabayashi, H.; Takeya, K.; Itokawa, H. Planta Med. 1998, 64, 183–186. 'Zhang, J.-Z.; Fang, Z.-C.; Liang, X.-T.; He, C.-H.; Kong, M.; He, W.-Y.; Jin, X.-L. Phytochemistry 1995, 40, 881-884. "Zhang, J. Z.; Fang, Q. C.; Liang, X. T.; Kong, M.; He, W. Y. Chin. Chem. Lett. 1995, 6, 967–970. *Jia, Z. J.; Zhang, Z. P. Chin. Sci. Bull. 1991, 36, 1174–1176. 'Zhang, Z.-P.; Jia, Z.-J.; Zhu, Z.-Q.; Cui, Y.-X.; Cheng, J.-L.; Wang, Q.-G. Acta Chim. Sin. 1991, 49, 1023–1027. Revision of this stucture to the corresponding 11(15→1)-abeo-taxoid skeleton has been suggested: Huang, K.; Liang, J.; Gunatilaka, A. A. L. J. Chin. Pharm. University (Zhongguo Yaoke Daxue Xuebao) 1998, 29, 259-266. aaMin, Z. D.; Jiang, H.; Liang, J. Y. Acta Pharmacol. Sin. (Yaoxue Xuebao) 1989, 24, 673-677. bbLiang, J.; Min, Z.; Niwa, M. J. Huaxue Zuebao 1988, 46, 1053-1054. "Liang, J.-Y.; Huang, K.-S.; Gunatilaka, A. A. L.; Yang, L. Phytochemistry 1998, 47, 69-72.

for example, a 2,3-dihydroxy-3-phenylpropionyl group at the C-13 position of baccatin III in one example and a tigloyl substituent at C-2 in place of the more normal benzoyl group in another example. As with the taxoids of Table 2, it has been suggested that the structures of several members of this class should be revised to the corresponding members of the class of $11(15\rightarrow 1)$ -*abeo*-taxoids with an oxetane ring (Table 12).^{17,18} This reassignment of structure was supported by NMR evidence and in one case by an X-ray structure. To minimize confusion the structures of those compounds which are thought to be incorrect are given in Table 8 with a footnote indicating that the structure has been corrected.

13-Oxo-7,9-bisdeacetylbaccatin VI showed only very weak cytotoxic activity against P-388 lymphocytic cells (IC $_{50}$ 21 $\mu g/mL).^{25}$

Taxoids with an Oxetane Ring and a Phenylisoserine C-13 Side Chain (Table 9). Taxoids of this class include taxol and a number of related compounds differing in their ring substituents and also in the substituents on the N-3' position of the side chain. Side-chain hydroxylation at the 2'-position is always present as is oxidation at C-1 of the taxane ring. *N*-Methyl taxol C and taxcultine showed activity close to that of taxol in a tubulin assembly assay.²⁸

Taxoids with an Opened Oxetane or Oxirane Ring (Table 10). A number of taxoids have been isolated in recent years which can be derived formally by opening of the oxetane ring of a taxoid related to baccatin III or by opening of the oxirane ring of a taxoid related to baccatin I. Since oxirane rings can be opened fairly easily under basic conditions, and since the oxetane ring of baccatin III can be opened under a variety of conditions,²⁹ it is conceivable that some members of this class are artifacts of the isolation process, but it seems more probable that they are in fact genuine natural products.

11(15 \rightarrow 1)-*abeo*-Taxoids with a C-4(20) Double Bond (Table 11). A growing number of taxoids have the $11(15\rightarrow 1)$ -

abeo-taxane skeleton. First encountered as a transformation product of taxol²⁹ this skeleton was then observed in the naturally occurring taxoid brevifoliol,³⁰ and then in an increasing number of taxoids. The NMR spectra of these compounds often show broad lines due to fluxional behavior of the B and C ring systems, which can adopt either B-twist-boat/C-chair or B-twist-chair/C-boat conformations.³¹ A few compounds of this type have been isolated with the epimeric β configuration at C-2 and C-9. Esterification at C-2 is usually acetate rather than benzoate in this series, and both cinnamate and β -aminophenylpropionate esters are observed at C-5.

(-)-2 α -Acetoxy-2',7-dideacetoxy-1-hydroxy-11(15 \rightarrow 1)-*abeo*austrospicatine shows activity as a pyrethroid synergist with the black vine weevil.³²

11(15–1)-*abeo*-taxoids with an Oxetane Ring (Table **12)**. A large number of taxoids of this class has been isolated in recent years, primarily from *T. chinensis, T. yunnanensis,* and *T. wallichiana.* The C-2 ester group may be either benzoate or acetate, as is also the case with the C-7, C-9, and C-10 ester groups, if present. 9-Deacetyl-taxayuntin E showed very weak cytotoxic activity against P-388 lymphocytic leukemia cells, with an IC₅₀ of 44 μ g/mL.³³

11(15 \rightarrow 1)-*abeo*-Taxoids with an Opened Oxetane or Oxirane Ring (Table 13). The $11(15\rightarrow)$ -*abeo*-taxoids correspond to *abeo*-taxoids which have undergone opening of an oxirane or oxetane ring, as observed also for a group of normal taxoids (Table 13). Taxuchin B, the first reported chlorine-containing taxoid, is a member of this class isolated from *T. chinensis*.

3,8-*seco***-Taxoids (Table 14).** An interesting group of taxoids is bicyclic, with the normal ABC ring system replaced by an AB ring system comprising the usual sixmembered A-ring and a 12-membered B-ring. Compounds of this class may have a cinnamoyl group at the C-4 position.

Table 5. Taxoids with a C-4(20) Double Bond and Oxygenation at C-14

name	molecular formula	MW	R_1	R ₂	R_3	R_4	R ₅	R ₆	R ₇	R ₈	[α] _D	mp (°C)	plant source	plant part; % yield	refs
taxuyunnanine J	$C_{22}H_{34}O_4$	362	Н	Ac	Η	Н	OH	Η	Η	NA	+71.3°		T. yunnanen-	rt	а
$2\alpha, 10\beta, 14\beta$ -trihydroxy- 5α -acetoxytaxa-4(20), 11-	$C_{22}H_{34}O_5$	378	OH	Ac	Η	Н	ОН	Η	Н	NA	(CHCl ₃) +39.2° (MeOH)	67-69	sis T. yunnanen- sis	сс	b
taxuyunnanine G	$C_{24}H_{36}O_{6}$	420	OAc	Ac	Н	Н	OH	Н	Н	NA	$+40.6^{\circ}$		T. yunnanen-	rt	а
taxuyunnanine H	$C_{25}H_{38}O_6$	434	OAc	Н	Н	Н	OH	Н	b	NA	$(CHCI_3)$ +101.8°		T. yunnanen-	rt	а
taxuyunnanine I	$C_{26}H_{40}O_{6}$	448	OAc	Н	Н	Н	OH	Н	а	NA	$(CHCI_3)$ +27.1°		T. yunnanen-	rt	а
7β,9α-diacetoxy-5α,13α,14β- trihydroxy-10-oxotaxa-	$C_{24}H_{34}O_8$	450	Н	Н	OAc	OAc	=0	ОН	Н	NA	$(CHCl_3)$ +11° (CHCl_3)		sis A. spicata	bk; 6.6×10^{-4}	с
(4)20,11-diene 2α-hydroxy-5α,10β,14β- triacetoxytaxa-4(20),11- diene	$C_{26}H_{38}O_7$	462	ОН	Ac	Н	Н	OAc	Н	Ac	NA	+28.7° (EtOH)	60-61	T. yunnanen- sis	сс	b
taxuyunnanine C	$C_{28}H_{40}O_8$	504	OAc	Ac	Η	Н	OAc	Н	Ac	NA	+41.1° (CHCl ₂)		T. yunnanen-	rt	d
$(2\alpha, 5\alpha, 10\beta, 14\beta$ -tetra- acetoxytaxa-4(20), 11-											(MeOH)	170	T. chinensis	сс	f
taxa-4(20),11-diene-10 β - methoxy-2 α ,5 α -diacetoxy- 14 β (α methyl)butgrate	$C_{30}H_{46}O_7$	518	OAc	Ac	Н	Н	OMe	Н	с	NA			T. baccata	rt	е
$2\alpha,5\alpha,10\beta$ -triacetoxy-14 β - propionyloxytaxa-4(20),11-	$C_{29}H_{42}O_8$	518	OAc	Ac	Н	Н	OAc	Н	b	NA	+41.37° (MeOH)	195	T. chinensis	сс	f
10-deacetylyunnanaxane	$C_{29}H_{44}O_8$	520	OAc	Ac	Н	Н	OH	Н	d	NA	-41.0°		T. media	rt; 1.5 \times 10 ⁻⁴	g
7β -hydroxy-2α,5α,10 β ,14 β - tetraacetoxytaxa-(4)20,11- diana	$C_{28}H_{40}O_9$	520	OAc	Ac	OH	Н	OAc	Н	Ac	NA	(011013)		T. cuspidata	1.3×10 cc; 1.4×10^{-2}	h
14β-hydroxytaxusin (5α,9α,10β,13α-tetraacetoxy- towa 4(20) 11 diam 14β cl)	$C_{28}H_{40}O_9$	520	Н	Ac	Н	OAc	OAc	OAc	Н	NA	+76.4° (CHCl ₃)	208-209	T. mairei	bk; 1.0×10^{-4}	i
$2\alpha, 5\alpha, 10\beta$ -triacetoxy-14 β -iso- butyryloxytaxa-4(20),11-	$C_{30}H_{44}O_8$	532	OAc	Ac	Н	Н	OAc	Н	а	NA	+33.96° (MeOH)	183	T. chinensis	сс	f
$2\alpha, 5\alpha, 10\beta$ -triacetoxy- 14β - (2-methyl)butyryloxytaxa-	$C_{31}H_{46}O_8$	546	OAc	Ac	Н	Н	OAc	Н	с	NA	+36.96° (MeOH)	106	T. chinensis	сс	f
4(20),11-aiene											+44.2°	108.5	T. baccata T. cuspidata	rt hw	e j
9α -hydroxy- 14β - $(2$ -methylbutyryl)oxy- 2α , 5α , 10β -triacetoxytaxa- $4(20)$, 11 -diora	$C_{31}H_{46}O_9$	562	OAc	Ac	Н	OH	OAc	Н	с	NA	$(CHCl_3)$ +65.8° (CHCl ₃)		T. mairei	tw	k
$2\alpha, 5\alpha, 9\alpha, 10\beta, 14\beta$ -pentaacet-	$C_{30}H_{42}O_{10}$	562	OAc	Ac	Н	OAc	OAc	Н	Ac	NA	$+26^{\circ}$	132-133	T. mairei	tw	k
taiwanxan	$C_{31}H_{46}O_9$	562	OAc	Н	Н	OAc	OAc	Н	с	NA	$(CHCl_3)$ +43.7° (CHCl_3)	227-229	T. mairei	hw; 1.7×10^{-4}	1
taxuyunnanine B	$C_{33}H_{48}O_{10}$	604	OAc	Ac	Н	OAc	OAc	Н	с	NA	+58.2° (CHCl ₃)	227-230	T. mairei T. yunnanen- sis	hw rt	m d
$2'\beta$, 13α , 14β -trisdeacetyl- austrotaxine	C ₃₅ H ₄₇ NO ₁₀	641	Н	e	OAc	OAc	=0	OH	Н	ОН	-21° (CHCl ₂)		A. spicata	bk; 7.0×10^{-4}	С
2'-deacetoxyaustrotaxine	$C_{39}H_{51}NO_{11}$	709	Н	e	OAc	OAc	=0	OAc	Ac	Н	-37°		A. spicata	lv; 3.3×10^{-4}	п
2'-deacetylaustrotaxine	$C_{39}H_{51}NO_{12}$	725	Н	e	OAc	OAc	=0	OAc	Ac	ОН	141°		A. spicata	lv;	n
austrotaxine	C ₄₁ H ₅₃ NO ₁₃	767	Н	e	OAc	OAc	=0	OAc	Ac	OAc	$(CHCl_3)$ -49° (CHCl_3)		A. spicata	4.4×10^{-4} lv; 4.8×10^{-4}	n

Table 5. (Continued)

^a Zhang, H.; Sun, H.; Takeda, Y. J. Nat. Prod. **1995**, *58*, 1153–1159. ^bCheng, K.; Fang, W.; Yang, Y.; Xu, H.; Meng, C.; Kong, M.; He, W.; Qicheng, F. Phytochemistry **1996**, *42*, 73–75. ^cEttouati, L.; Ahond, A.; Convert, O.; Poupat, C.; Potier, P. Bull. Soc. Chim. Fr. **1989**, *5*, 687–694. ^dZhang, H.; Takeda, Y.; Minami, Y.; Yoshida, K.; Matsumoto, T.; Xiang, W.; Mu, O.; Sun, H. Chem. Lett. **1994**, *957–960*. ^eTopcu, G.; Sultana, N.; Akhtar, F.; Habib-ur-Rehman; Hussain, T.; Choudhary, M. I.; Atta-ur-Rahman. Nat. Prod. Lett. **1994**, *4*, 93–100. ^fMa, W.; Stahlhut, R. W.; Adams, T. L.; Park, G. L.; Evans, W. A.; Blumenthal, S. G.; Gomez, G. A.; Nieder, M. H.; Hylands, P. J. J. Nat. Prod. **1994**, *57*, 1320–1324. ^gGabetta, B.; Peterlongo, F.; Zini, G.; Barboni, L.; Rafaiani, G.; Ranzuglia, P.; Torregiani, E.; Appendino, G.; Cravotto, G. Phytochemistry **1995**, *40*, 1825–1828. ^hFedoreyev, S. A.; Vasilevskaya, N. A.; Veselova, M. V.; Denisenko, V. A.; Dmitrenok, P. S.; Ozhigova, I. T.; Muzaeok, T. I.; Zhuravlev, Y. N. *Fitoterapia* **1998**, *69*, 430–432. ^fShi, Q.-W.; Oritani, T.; Kiyota, H. Nat. Prod. Lett. **1998**, *12*, 85–90. ^fSugiyama, T.; Oritani, T.; Oritani, T. Biosci., Biotechnol., Biochem. **1994**, *58*, 1923–1924. ^kYang, S.-J.; Fang, J.-M.; Cheng, Y.-S. Phytochemistry **1996**, *43*, 839–842. ^hYeh, M. K.; Wang, J. S.; Yang, W. L.; Chen, F. C. Proc. Natl. Sci. Counc. Repub. China, Part A: Phys. Sci. Eng. **1988**, *12*, 89–90. ^mHo, T.-I.; Lin, Y.-C.; Lee, G.-H.; Peng, S.-M.; Yeh, M.-K.; Chen, F. C. Acta Crystallogr. Sect. C. **1987**, *43*, 1380–1382. ⁿEttouati, L.; Ahond, A.; Convert, O.; Laurent, D.; Poupat, C.; Potier, P. Bull. Soc. Chim. Fr. **1988**, 749.

Table 6. Taxoids with a C-12(16)-Oxido Bridge and a C-4(20) Double Bond

name	molecular formula	MW	R_1	R_2	R ₃	R ₄	R_5	[α] _D	mp (°C)	plant source	plant part; % yield	refs
2α -deacetyl- 5α -decinnamoyltaxagifine	C ₂₆ H ₃₆ O ₁₁	524	Η	Η	Η	Ac	Η	+54.5° (CHCl ₃)	206-207	T. chinensis	lv, st; 3.5 × 10^{-4}	a, b
5α -decinnamoyltaxagifine	$C_{28}H_{38}O_{12}$	566	Ac	Η	Η	Ac	Η	+4.6° (MeOH)	118-120	T. chinensis	lv, st; 1.7×10^{-3}	С
5α -acetyl- 5α -decinnamoyltaxagifine	$C_{30}H_{40}O_{13}$	608	Ac	Ac	Η	Ac	Η	-7° (CHCl ₃)	261-263	T. chinensis	lv, st; 3.5×10^{-4}	С
5-decinnamoyl-11-acetyl-19- hydroxyltaxagifine	$C_{30}H_{40}O_{14}$	624	Ac	Η	OH	Ac	Ac	-12.1° (MeOH)	209-210	T. yunnanensis	bk	d
19-debenzoyl-19-acetyltaxinine M	$C_{30}H_{40}O_{14}$	624	Ac	Η	OAc	Ac	Η	+2.8° (CHCl ₃)		T. wallichiana	lv	е
taxinine M	$C_{35}H_{42}O_{14}$	686	Ac	Η	OBz	Ac	Η	-24° (MeOH)		T. brevifolia	bk	f
taxagifine	$C_{37}H_{44}O_{13}$	696	Ac	а	Η	Ac	Η	-5.4° (CHCl ₃)	265-267	T. cuspidata	sd; 3.8×10^{-3}	g
								+14.3° (MeOH)	265-267	T. chinensis	$lv,st;$ 2.5 \times 10^{-3}	С
								+7.5° (MeOH)	265-267	T. baccata	$\begin{array}{l} lv;\\ 5.0\times10^{-3} \end{array}$	h, i
taxuspine S	$C_{37}H_{44}O_{14}$	712	Ac	а	OH	Ac	Η	-4.4° (CHCl ₃)		T. cuspidata	st; 2.1×10^{-4}	j
taxuspine T	$C_{37}H_{44}O_{14}$	712	Ac	а	OAc	Η	Η	-13.4° (CHCl ₃)		T. cuspidata	st; $1.9 imes 10^{-4}$	j
19-acetoxytaxagifine (taxezopidine L)	$C_{39}H_{46}O_{15}$	754	Ac	a	OAc	Ac	Η	-2.4° (MeOH) +94°	106-108	T. chinensis T. cuspidata	bk, tw, lv; 9.0×10^{-5} sd	k 1
taxacin	$C_{44}H_{48}O_{15}$	816	Ac	a	OBz	Ac	Н	(CHCl ₃) -4.8° (CHCl ₃)	285-287	T. cuspidata	sd; 5.8×10^{-3}	g

^a Zhang, Z.; Jia, Z. *Phytochemistry* **1991**, *30*, 2345–2348. ^bZhang, Z. P.; Jia, Z. J. *Chin. Chem. Lett.* **1990**, *1*, 91–92. 'Zhang, Z.; Jia, Z.; Zhu, Z.; Cui, Y.; Cheng, J.; Wang, Q. *Planta Med.* **1990**, *56*, 293–294. ^dChen, W. M.; Zhang, P. L.; Zhou, J. Y. *Yaoxue Xuebao* **1994**, *29*, 207–214. 'Barboni, L.; Gariboldi, P.; Torregiani, E.; Appendino, G.; Varese, M.; Gabetta, B.; Bombardelli, E. J. Nat. Prod. **1995**, *58*, 934–939. 'Beutler, J. A.; Chmurny, G. M.; Look, S. A.; Witherup, K. M. J. Nat. Prod. **1991**, *54*, 893–897. [&]Yoshizaki, F.; Fuduka, M.; Hisamichi, S.; Ishida, T.; In, Y. *Chem. Pharm. Bull.* **1988**, *36*, 2098–2102. ^hChauviere, G.; Guenard, D.; Pascard, C.; Picot, F.; Potier, P.; Prange, T. J. *Chem. Soc., Chem. Commun.* **1982**, 495. ⁱChauviere, G.; Guenard, D.; Picot, F.; Senilh, V.; Potier, P. *Acad. Sci. Paris, Ser. II* **1981**, *293*, 501–503. ^AWang, X.-X.; Shigemori, H.; Kobayashi, J. *Tetrahedron* **1996**, *52*, 12159–12164. ^kFukushima, M.; Takeda, J.; Fukushi, N.; Okano, M.; Tagahara, K.; Zhang, S.-X.; Zhang, D.-C.; Lee, K.-H. J. Nat. Prod. **1999**, *62*, 140–142. ⁱShigemori, H.; Sakurai, C. A.; Hosoyama, H.; Kobayashi, A.; Kajiyama, S.; Kobayashi, J. *Tetrahedron* **1999**, *55*, 2553–2558.

These taxoids may be formed from an initial verticillyl cation which does not undergo the proton shift needed to generate the normal taxane ring system, but instead is quenched at the bicyclic stage. An alternate possibility is that they arise by the pathway of Scheme 1, since it is unlikely that the enzymes responsible for hydroxylating the tricyclic taxoid skeleton would show a similar specificity for bicyclic taxoids. This consideration thus suggests that formation of the bicyclic skeleton occurs *after* hydroxylation, as indicated in Scheme 1.³⁴

Canadensene and its 5-epi derivative, novel *Taxus* metabolites with a pre-taxane structure in which rings B, C, and D are not yet formed, have been isolated from the leaves of *T. canadensis*.³⁵ Their structural similarity with the taxol skeleton makes these compounds intriguing possible intermediates for the biosynthesis of taxol.

Taxoids with a C-3(11) Bridge and a C-4(20) Double Bond (Table 15). It is not known whether 5-*O*-cinnamoyl-9-*O*-acetylphototaxicin I, which has been isolated in trace amounts from *T. baccata*, is a natural product or an artifact

Table 7. Taxoids with a C-4(20) Epoxide

	₹₄													
Y I I				<u>ب</u> ر				Ĵ		-			1e	
	ίο ^{ΌR} 3 ^Υ	Ť	Ph	r	0]	5	~/	Ph Y	Ƴ Ph	Ϋ́ΥΡ	n	
		a				b			c		d	e		
name	molecular formula	MW	R_1	\mathbf{R}_2	R_3	R_4	R ₅	R ₆	\mathbf{R}_7	[α] _D	mp (°C)	plant source	plant part; % yield	refs
$2\alpha,5\alpha,9\alpha$ -trihydroxy- $10\beta,13\alpha$ - diacetoxy- $4\beta,20$ -epoxy- toxy 11 opp	$C_{24}H_{36}O_8$	452	Н	OH	Н	Η	OH	OAc	OAc		216-218	T. chinensis	lv	a, b
7β ,9 α ,10 β -tri-deacetyl-1 β -hydroxybaccatin I,	$C_{26}H_{38}O_{11}$	526	ОН	OAc	Ac	ОН	ОН	ОН	OAc	+78° (CHCl ₃)		T. mairei	rt	с
1-hydroxy-2,7,9-trideacetyl-	$C_{26}H_{38}O_{11}$	526	ОН	ОН	Ac	OH	ОН	OAc	OAc	-52.9°	232-235	T. yunnanensis	bk	d
nicotaxine	C ₃₀ H ₃₇ NO ₉	555	Н	OAc	Н	Н	b	OAc	=0	(MeOH) +112°		A. spicata	bk;	е
1β -hydroxy-7,9-deacetyl-	$C_{28}H_{40}O_{12}$	568	ОН	OAc	Ac	OH	ОН	OAc	OAc	$(CHCI_3)$ +65.84°		T. canadensis	0.3×10^{-3}	f
$(2\alpha,5\alpha,10\beta,13\alpha-\text{tetraacetoxy}-1\beta,7\beta,9\alpha-\text{trihydroxy}-4\beta,20-epoxytax-11-ene),$										(CHCI ₃) +15° (MeOH)		T. mairei	4.0 × 10 * rt	g
10β -deacetylspicatine	$C_{33}H_{42}O_9$	582	Н	OAc	с	Н	ОН	ОН	OAc	$+66^{\circ}$		A. spicata	bk;	е
5 α -deacetylbaccatin I 1 β ,7 β -dihydroxy-4 β ,20-epoxy- 2 α ,5 α ,9 α ,10 β ,13 α -penta-	$\begin{array}{c} C_{30}H_{42}O_{12} \\ C_{30}H_{42}O_{13} \end{array}$	594 610	H OH	OAc OAc	H Ac	OAc OH	OAc OAc	OAc OAc	OAc OAc	(CHCI3)	256-258	T. baccata T. brevifolia	7.8 × 10 °	h i
acetoxytax-11-ene 1β ,9 α -dihydroxy- 4β ,20-epoxy- 2α ,5 α ,7 β ,10 β ,13 α -penta-	$C_{30}H_{42}O_{13}$	610	OH	OAc	Ac	OAc	ОН	OAc	OAc			T. brevifolia	bk	i
1β -hydroxy- 7β -deacetoxy- 7α -	$C_{30}H_{42}O_{13}$	610	ОН	OAc	Ac	α-OH	OAc	OAc	OAc	$+74^{\circ}$	217-218	T. baccata	bk;	j
1β -hydroxy-5 α -deacetyl-	$C_{30}H_{42}O_{13}$	610	ОН	OAc	Н	OAc	OAc	OAc	OAc	$(CHCI_3)$ +138.7°	273-275	T. yunnanensis	$2.4 \times 10^{\circ}$ lv, st;	k
(taxuspine V)										$+56^{\circ}$	230-232	T. cuspidata	4.5 × 10 · st	1
1β -hydroxy-10-deacetyl-	$C_{30}H_{42}O_{13}$	610	ОН	OAc	Ac	OAc	OAc	ОН	OAc	(CHCI ₃)		T. yunnanensis	rt	т
$(10\beta$ -deacetyl-1 β -hydroxy- baccatin I), taxumairol D										+75° (CHCl ₃)		T. mairei	rt	С
taxumairol F	$C_{30}H_{42}O_{13}$	610	OH	OAc	Ac	OAc	OAc	OAc	OH	+13° (CHCl ₂)		T. mairei	rt	п
9α -acetyl-10 β -deacetyl-	$C_{35}H_{44}O_{10}$	624	Н	OAc	с	Н	OAc	OH	OAc	$+17^{\circ}$ (CHCl ₂)		A. spicata	bk; 4.7×10^{-5}	е
spicatine	$C_{35}H_{44}O_{10}$	624	Н	OAc	с	Η	ОН	OAc	OAc	+45° (CHCl ₂)		A. spicata	bk; 3.9×10^{-4}	е
baccatin I 1β-hydroxybaccatin I	$C_{32}H_{44}O_{13}$ $C_{30}H_{44}O_{14}$	636 652	H OH	OAc OAc	Ac Ac	OAc OAc	OAc OAc	OAc OAc	OAc OAc	+86° +102°	298 273	T. baccata T. baccata		h h
	0.301 144 0 14		011	0110		0110	0110	0110	0.10	1100	257-262	T. wallichiana	lv, st, rt; 7.8×10^{-4}	0
												T. mairei	hw; $4.8 imes 10^{-5}$	р
1β-acetoxy-5α-deacetyl- baccatin I	$C_{32}H_{44}O_{14}$	652	OAc	OAc	Н	OAc	OAc	OAc	OAc		240-241	T. mairei	bk; 5.0×10^{-3}	q
spicataxine	$C_{37}H_{51}NO_{10}$	669	Н	OAc	а	Н	ОН	OAc	OAc	+67° (CHCla)		A. spicata	bk; 1.4×10^{-3}	е
9α -acetyl- 10β -deacetyl-	$C_{37}H_{51}NO_{10}$	669	Н	OAc	а	Η	OAc	OH	OAc	$+43^{\circ}$		A. spicata	bk; 5.8×10^{-4}	е
5α-O-(3'-amino-3'-phenyl- propionyl)nicotaxine	$C_{39}H_{46}N_2O_{10}\\$	702	Н	OAc	d	Н	b	OAc	=0	+93° (CHCl ₂)		A. spicata	bk; 1.2×10^{-4}	е
5α- <i>O</i> -(3'-methylamino-3'-	$C_{40}H_{48}N_2O_{10}\\$	716	Н	OAc	e	Н	b	OAc	=0	$+103^{\circ}$		A. spicata	bk; 1.2×10^{-4}	е
<i>N</i> -demethylnicaustrine	$C_{42}H_{52}N_2O_{11}\\$	760	Н	OAc	e	Н	b	OAc	OAc	$+93^{\circ}$		A. spicata	bk; 1.1×10^{-4}	е
7eta-acetoxy-9-acetylspicataxine	C ₄₁ H ₅₅ NO ₁₃	769	Н	OAc	а	OAc	OAc	OAc	OAc	$+56^{\circ}$	212-213	T. media	rt	r
nicaustrine	$C_{43}H_{54}N_2O_{11}\\$	774	Н	OAc	a	Н	b	OAc	OAc	$+67^{\circ}$ (CHCl ₃)		A. spicata	bk; 3.0×10^{-4}	е

Table 7. (Continued)

^a Zhang, Z. P.; Wiedenfeld, H.; Roder, E. *Phytochemistry* **1995**, *38*, 667–670. ^bWiedenfeld, H.; Knoch, F.; Zhang, Z. P. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. **1995**, *C51*, 2184–2186. 'Shen, Y.-C.; Chen, C.-Y. *Phytochemistry* **1997**, *44*, 1527–1533. ^dChen, W. M.; Zhang, P. L.; Zhou, J. Y. *Yaoxue Xuebao* **1994**, *29*, 207–214. ^eEttouati, L.; Ahond, A.; Convert, O.; Poupat, C.; Potier, P. *Bull. Soc. Chim. Fr.* **1989**, *5*, 687–694. ^fZamir, L. O.; Nedea, M. E.; Zhou, Z.-H.; Belair, S.; Caron, G.; Sauriol, F.; Jacomain, E.; Jean, F. I.; Garneau, F.-X.; Mamer, O. *Can. J. Chem.* **1995**, *73*, 655–665. ^gShen, Y.-C.; Tai, H.-R.; Chen, C.-Y. *J. Nat. Prod.* **1996**, *59*, 173–176. ^hDella Casa de Marcano, D. P.; Halsall, T. G. *J. Chem. Soc. D* **1970**, 1381–1382. ^fChu, A.; Davin, L. B.; Zajicek, J.; Lewis, N. G.; Croteau, R. *Phytochemistry* **1993**, *34*, 473–476. ^fSenilh, V.; Blechert, S.; Colin, M.; Guenard, D.; Picot, F.; Potier, P.; Varenne, P. *J. Nat. Prod.* **1986**, *47*, 131–137. ^kZhang, Z.; Jia, Z. *Phytochemistry* **1990**, *29*, 3673–3675. ^fHosoyama, H.; Inubushi, A.; Katasui, T.; Shigemori, H.; Kobayashi, J. *Tetrahedron* **1996**, *52*, 13145–13150. ^mZhang, H.; Mu, Q.; Xiang, W.; Yao, P.; Sun, H.; Yoshio, T. *Phytochemistry* **1997**, *44*, 911–915. ⁿShen, Y.-C.; Chen, C.-Y. *Planta Med.* **1997**, *63*, 569–570. ^eMiller, R. W.; Powell, R. G.; Smith, C. R., Jr.; Arnold, E.; Clardy, J. *J. Org. Chem.* **1981**, *46*, 1469–1474. ^pYeh, M.-K.; Wang, J.-S.; Lui, L.-P.; Chen, F.-C. *J. Chin. Biochem. Soc.* **1988**, *35*, 304–313. ^eLian, J.-Y.; Mizuno, M.; Tanaka, T.; Iinuma, M. *Phytochemistry* **1988**, *27*, 3674–3675. ^rAppendino, G.; Cravotto, G.; Enriu, R.; Gariboldi, P.; Barboni, L.; Torregiani, E.; Gabetta, B.; Zini, G.; Bombardelli, E. *J. Nat. Prod.* **1994**, *57*, 607–613.

Scheme 1. Proposed Biosynthetic Pathway for Bicyclic Taxoids

formed from the corresponding alkaloidal taxane by loss of dimethylamine during the repeated chromatographic separations required for its separation.³⁶ The same comments could also apply to the other cinnamoyl derivatives in Table 15.

2-(3\rightarrow20)-*abeo***-Taxoids (Table 16).** Taxoids of this class are presumably formed from a different transannular cyclization of an intermediate verticilladiene than that involved in normal taxoid biosynthesis.³⁷ The alkaloid taxine A, a component of the original "taxine", is a member of this class.

Miscellaneous Taxoids (Table 17). A variety of taxoids which do not fit any simple structural grouping are incorporated into Table 17. 13-Deacetoxy-13,15-epoxy- $11(15\rightarrow 1)$ -*abeo*-13-*epi*-baccatin VI is reported to be anancomeric (conformationally fixed) and is the first natural taxoid with a β -oxygenated function at C-13.³⁸ A proposal for the biogenetic pathway of taxuchin is given in the original paper.³⁹ Taxuspine D has a taxol-like biological activity,⁴⁰ and a compound with the wallifoliol skeleton was obtained from the rearrangement of a 9,10dioxotaxane.⁴¹

Biotransformations of Taxoids

A number of investigations have been carried out on the biotransformation of taxol and related taxoids, with a view either to increasing the availability of precursors to taxol or of preparing metabolites that would be inaccessible by simple chemical transformations. In the former class are studies of the site-specific enzymatic hydrolysis of taxanes. Thus two different strains of *Nocardioides* produced specific 13-deacylase and 10-deacetylase enzymes which could be used to convert various taxoid precursors to 10-deacetyl-baccatin III or related compounds;⁴² the problem of the removal of the 7 β -xylosyl group in some precursors was solved by the isolation of a xylosidase from *Moraxella* sp.⁴³ This work has been reviewed.⁴⁴

Several workers have investigated nonmammalian biotransformations of taxol and related compounds. Taxol

itself is metabolized in the presence of *Eucalyptus perrini*ana cells to baccatin III, 10-deacetylbaccatin III, and 2-debenzoyltaxol.⁴⁵ 10-Deacetyl-7-epitaxol and 1 β -hydroxybaccatin I are both metabolized by fungi isolated from the inner bark of *T. yunnanensis*, and interestingly 10-deacetyl-7-epitaxol is converted in part into 10-deacetyltaxol.⁴⁶ The conversion of taxol into 10-epitaxol can occur readily under certain conditions,⁴⁷ so the fact that this reaction can be reversed under biological conditions is interesting and potentially useful. Another fungus isolated from *T. yunnanensis* carried out a simple deacetylation of taxa-4(20),11diene-2 α ,5 α ,10 β ,14 β -tetrol tetracetate (sinenxan H) to its corresponding 5,10-deacetyl derivative.⁴⁸

Perhaps more interesting are the various oxidative transformations that have been observed on certain taxoids, since these can give some hints as to the biosynthetic oxidations that must also occur. Thus, the taxadiene **19** was metabolized by *Absidia coerula* and other fungi into the three metabolites **20–22**,⁴⁹ while two different 14β -hydroxytaxadienes were hydroxylated by *Cunninghamella echinulata*.⁵⁰ These conversions thus indicate thatmicrobial metabolism is a viable route to the preparation of new taxoids.

Table 8. Taxoids with an Oxetane Ring

name	molecular formula	MW	R ₁	R_2	R_3	R_4	R ₅	R ₆	R ₇	R ₈	R ₉	[α] _D	mp (°C)	plant source	plant part; % yield	refs
2-debenzoyl-2-tigloyl-10-	C ₂₇ H ₃₈ O ₁₀	522	OH	с	OAc	OH	=0	OH	OH	Н	Н	-30.4°		T. baccata	lv	а
1β -acetylbaccatin IV	$C_{28}H_{37}O_{10}$	533	OAc	OAc	OAc	OAc	OAc	OAc	OAc	Н	Н	(E1011) +59.3°	260-262	T. yunnanensis	lv, st;	b
10-deacetyl-10-	$C_{29}H_{34}O_{10}$	542	ОН	OBz	OAc	α-OH	=0	=0	OH	Н	Н	$(CHCI_3)$ -100.25°	170-172	T. chinensis	lv, st;	С
10-deacetyl- baccatin III	$C_{29}H_{35}O_{10}$	543	OH	OBz	OAc	ОН	=0	OH	OH	Η	Η	-41°	242-245	T. baccata	10^{-4} s $10^{$	d
												0.400	221-223	T. yunnanensis	$lv,st;$ 1.4×10^{-3}	b
												-249 [°] (EtOAc)	223-225	T. brevifolia	bk; 1.0×10^{-4}	е
13-epi-10-deacetyl-	$C_{29}H_{35}O_{10}$	543	OH	OBz	OAc	OH	=0	OH	β -OH	Н	Н	-10.7° (MeOH)		T. baccata	lv	а
taxuspinanane C	$C_{29}H_{36}O_{10}$	544	OH	OBz	OAc	OH	ОН	OH	=0	Н	Н	$+60^{\circ}$	152-154	T. cuspidata	st	f
2-debenzoyl-14β- benzoyloxy-10-	$C_{29}H_{36}O_{11}$	560	OH	ОН	OAc	ОН	=0	OH	OH	OBz	Н	-30° (MeOH)	160	T. wallichiana	lv	g
14β -hydroxy-10-	$C_{29}H_{36}O_{11}$	560	OH	OBz	OAc	OH	=0	OH	OH	OH	Н	-43.2°	215-217	T. wallichiana	lv;	h
7,9-deacetylbaccatinn IV	$C_{28}H_{40}O_{12}$	568	OH	OAc	OAc	OH	OH	OAc	OAc	Н	Н	$+24.05^{\circ}$		T. canadensis	4.0 × 10 · lv;	i
												(СПСІ3)	210-214	T. brevifolia	bk;	j
1-dehydroxybaccatin III	$C_{31}H_{37}O_{10}$	569	Н	OBz	OAc	OH	=0	OAc	OH	Н	Н	-45.9°	169-171	T. yunnanensis	10 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	b
baccatin III	$C_{31}H_{38}O_{11}$	586	OH	OBz	OAc	ОН	=0	OAc	ОН	Η	Н	$(CHCI_3)$ -54° (MeOH)	236-238	T. baccata	2.7×10^{-4} bk; 3.2×10^{-4}	k
												-54°	229-231	T. wallichiana T. wallichiana	st, rt lv, st, rt	l m
1-acetyl,10-deacetyl- baccatin III	$C_{31}H_{38}O_{11}$	586	OAc	OBz	OAc	ОН	=0	OH	OH	Η	Η	(MeOH)		T. canadensi	lv, st; 1.0×10^{-2}	n
baccatin V 13-oxo-7,9-bis-deacetyl- baccatin VI,	$\begin{array}{c} C_{31}H_{38}O_{11} \\ C_{31}H_{38}O_{11} \end{array}$	586 586	OH OH	OBz OBz	OAc OAc	α-OH OH	=0 0H	OAc OAc	ОН =0	H H	H H	-87° -40.2° (MeOH)	254-255	T. baccata T. cuspidata	st	o p
taxuspinanane D taxuspine E	$C_{31}H_{40}O_{11}$	588	OH	OBz	OAc	OAc	OH	OH	ОН	Н	Н	-17° (CHCl.)		T. cuspidata	st, lv	q
7,9,10-deacetyl-	$C_{31}H_{41}O_{11}$	589	OH	OBz	OAc	OH	OH	OH	OAc	Н	Н	(011013)		T. canadensis	lv;	i
7-epi-9,10-deacetyl-	$C_{31}H_{41}O_{11}$	589	ОН	OBz	OAc	α-OH	ОН	OH	OAc	Н	Н			T. canadensis	2.0 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	i
1β -dehydroxy-4 α -	$C_{30}H_{42}O_{12}$	594	Н	OAc	OH	OAc	OAc	OAc	OAc	Н	Н	$+40^{\circ}$	229-230	T. mairei	st, bk;	r
19-hydroxy-13-	$C_{31}H_{36}O_{12}$	600	ОН	OBz	OAc	OH	=0	OAc	=0	Н	OH	(acecone)	144-146	T. sumatrana	1.7×10^{-2} lv;	S
19-hydroxybaccatin III	$C_{31}H_{37}O_{12}$	601	OH	OBz	OAc	OH	=0	OAc	OH	Н	OH		180-182	T. baccata	2.0 × 10 ~ lv;	d
													173-175	T. yunnanensis	2.0×10^{-3} lv, st;	b
													171-174	T. wallichiana	1.7 × 10 ³ rt, st, lv;	t
7-epi-19-hydroxy-	$C_{31}H_{38}O_{12}$	602	OH	OBz	OAc	α-OH	=0	OAc	OH	Н	OH	-105.2°	263-265	T. chinensis	9.1 × 10 ⁴ lv, st;	С
$9(\beta H)$ -9-dihydro-19- acetoxy-10-deacetyl-	$C_{31}H_{40}O_{12}$	604	ОН	OBz	OAc	OH	ОН	ОН	OH	Н	OAc	(CHCl ₃) -44° (CHCl ₃)	148	T. baccata	1.1×10^{-4} lv	и
baccatin III 4-deacetylbaccatin IV	$C_{30}H_{42}O_{13}$	610	ОН	OAc	ОН	OAc	OAc	OAc	OAc	Η	Η	+60° (CHCl ₃)	179	T. x media	rt	V

Table 8. (Continued)
---------------------	---

name	molecular formula	MW	R_1	R_2	R_3	R_4	R_5	R ₆	R ₇	R ₈	R ₉	[α] _D	mp (°C)	plant source	plant part; % yield	refs
9-dihydro,13-acetyl- baccatin III	$C_{33}H_{42}O_{12}$	630	OH	OBz	OAc	OH	OH	OAc	OAc	Η	Η		221	T. canadensi	lv	W
10-(β-hydroxybutyryl)- 10-deacetylbaccatin I	$C_{33}H_{42}O_{12}$	630	OH	OBz	OAc	OH	=0	d	OH	Η	Η			T. baccata	lv	X
7,9-deacetylbaccatin VI	$C_{33}H_{43}O_{12}$	631	OH	OBz	OAc	OH	OH	OAc	OAc	Η	Η			T. canadensi	$lv,st;$ 1.4×10^{-2}	п
1eta-dehydroxybaccatin IV	$C_{32}H_{44}O_{13}$	636	Н	OAc	OAc	OAc	OAc	OAc	OAc	Η	Η	+5° +99° (CHCl ₃)	286 259-260	T. mairei	hw; 2.2×10^{-2}	y z
baccatin IV	$C_{32}H_{44}O_{14}$	652	OH	OAc	OAc	OAc	OAc	OAc	OAc	Η	Η	$+19^{\circ}$	254 - 255			V
9-deacetylbaccatin VI	$C_{35}H_{44}O_{13}$	672	OH	OBz	OAc	OAc	OH	OAc	OAc	Н	Н			T. yunnanensis	rt	aa
10-deacetylbaccatin VI	C25H44O12	672	OH	OBz	OAc	OAc	OAc	OH	OAc	Н	Н			T. vunnanensis	rt	aa
13-deacetylbaccatin VI	$C_{35}H_{44}O_{13}$	672	ОН	OBz	OAc	OAc	OAc	OAc	ОН	Н	Н	-38° (MeOH)	225-226	T. wallichiana	lv; 2.1×10^{-2}	bb
7-xylosyl-10-deacetyl- baccatin III	$C_{34}H_{44}O_{14}$	676	OH	OBz	OAc	g	=0	OH	ОН	Н	Н	-26.9° (MeOH)	244-246	T. yunnanensis	bk	сс
1eta-dehydroxybaccatin VI	$C_{37}H_{46}O_{13}$	698	Η	OBz	OAc	OAc	OAc	OAc	OAc	Η	Η	-21.2° (CHCl ₃)	220-221	T. mairei	hw; 1.6×10^{-2}	Ζ
baccatin VII	C26H52O14	708	OH	h	OAc	OAc	OAc	OAc	OAc	н	Н	+9°	270			V
baccatin VI	$C_{37}H_{46}O_{14}$	714	ОН	OBz	OAc	OAc	OAc	OAc	OAc	Η	Η	-5° (CHCl ₃)	248-250	T. baccata	bk; 4.0×10^{-4}	k
												-5° -9° (CHCl ₃)	244–245 239–241	T. mairei	hw; 3.2×10^{-3}	y z
deaminoacylcinnamoyltaxol, taxuspinanane J (haccatin UL-13-cinnamate)	$C_{40}H_{44}O_{12}$	716	OH	OBz	OAc	OH	=0	OAc	e	Η	Н	-43.8° (CHCl ₃) -75.7°		T. cuspidata T. mairei	$\begin{array}{l} st;\\ 1.0 \times 10^{-5}\\ tw \end{array}$	dd
(baccacin in-13-cinnamate)												(CHCl ₃)		1. man ei	C VV	<i>cc</i>
10-hydroxyacetylbaccatin VI	$C_{37}H_{46}O_{15}$	730	OH	OBz	OAc	OAc	OAc	b	OAc	Η	Η			T. canadensis	6.0×10^{-4}	i
13(2',3'-dihydroxy-3'-phenyl)- propionylbaccatin III, yunnanyol	$C_{40}H_{46}O_{14}$	750	OH	OBz	OAc	OH	=0	OAc	a	Η	Н	-75.2° (CHCl ₃)	154-157	T. yunnanensis	bk	ff
$2\alpha, 7\beta$ -dibenzoxy- $5\beta, 20$ -epoxy- 1β -hydroxy- $4\alpha, 9\alpha, 10\beta, 13\alpha$ - tetraacetoxytax-11-epe	$C_{42}H_{48}O_{14}$	776	OH	OBz	OAc	OBz	OAc	OAc	OAc	Н	Н			T. brevifolia	bk	gg
$2\alpha, 10\beta$ -dibenzoxy- $5\beta, 20$ -epoxy- 1β -hydroxy- $4\alpha, 7\beta, 9\alpha, 13\alpha$ - tetraacetoxytax-11-ene	$C_{42}H_{48}O_{14}$	776	ОН	OBz	OAc	OAc	OAc	OBz	OAc	Η	Н			T. brevifolia	bk	gg
5β , 20-epoxy- 1β -hydroxy- 4 α , 7β , 13α -triacetoxy- 2α , 9α , 10β -tribenzoxytax- 11-ene	$C_{47}H_{50}O_{14}$	838	ОН	OBz	OAc	OAc	OBz	OBz	OAc	Η	Н			T. brevifolia	bk	gg
taxuspine N	C ₄₆ H ₅₇ NO ₁₄	847	OH	OAc	OAc	OAc	OAc	OBz	f	Η	Н	-6.0° (CHCl ₃)		T. cuspidata	$\begin{array}{l} st;\\ 7.3\times10^{-4} \end{array}$	hh

^a Gabetta, B.; de Bellis, P.; Pace, R.; Appendino, G.; Barboni, L.; Torregiani, E.; Gariboldi, P.; Viterbo, D. J. Nat. Prod. 1995, 58, 1508–1514. ^bZhang, Z.; Jia, Z. *Phytochemistry* **1990**, 29, 3673–3675. Fuji, K.; Tanaka, K.; Li, B.; Shingu, T.; Sun, H.; Taga, T. J. Nat. Prod. 1993, 56, 1520-1531. ^dChauviere, G.; Guenard, D.; Picot, F.; Senilh, V.; Potier, P. Acad. Sci. Paris, Ser. II 1981, 293, 501-503. eKingston, D. G. I.; Hawkins, D. R.; Ovington, L. J. Nat. Prod. 1982, 45, 466-470. Morita, H.; Wei, L.; Gonda, A.; Takeya, K.; Itokawa, H. Phytochemistry 1997, 46, 583-586. Appendino, G.; Ozen, H. C.; Gariboldi, P.; Torregiani, E.; Gabetta, B.; Nizzola, R.; Bombardelli, E. J. Chem. Soc., Perkin Trans. I 1993, 1563–1566. ^hAppendino, G.; Gariboldi, P.; Gabetti, B.; Pace, P.; Bombardelli, E.; Viterbo, D. J. Chem. Soc., Perkin Trans. I 1992, 21, 2925-2929. Zamir, L. O.; Nedea, M. E.; Zhou, Z.-H.; Belair, S.; Caron, G.; Sauriol, F.; Jacomain, E.; Jean, F. I.; Garneau, F.-X.; Mamer, O. Can. J. Chem. 1995, 73, 655-665. Rao, K. V.; Bhakuni, R. S.; Hanuman, J. B.; Davies, R.; Johnson, J. Phytochemistry 1996, 41, 863–866. ^kSenilh, V.; Blechert, S.; Colin, M.; Guenard, D.; Picot, F.; Potier, P.; Varenne, P. J. Nat. Prod. 1984, 47, 131-137. Powell, R. G.; Miller, R. W.; Smith, C. R., Jr. J. Chem. Soc., Chem. Commun. 1979, 102-104. "Miller, R. W.; Powell, R. G.; Smith, C. R., Jr.; Arnold, E.; Clardy, J. J. Org. Chem. 1981, 46, 1469-1474. "Zamir, L. O.; Nedea, M. E.; Belair, S.; Sauriol, F.; Mamer, O.; Jacqmain, E.; Jean, F. I.; Garneau, F. Tetrahedron Lett. 1992, 33, 5173-5176. "Della Casa de Marcano, D. P.; Halsall, T. G.; Castellano, E.; Hodder, O. J. R. J. Chem. Soc. D 1970, 1382. PMorita, H.; Gonda, A.; Wei, L.; Yamamura, Y.; Wakabayashi, H.; Takeya, K.; Itokawa, H. Planta Med. 1998, 64, 183-186. "Kobayashi, J.; Inubushi, A.; Hosoyama, H.; Yoshida, N.; Sasaki, T.; Shigemori, H. Tetrahedron 1995, 51, 5971-5978. 'Lian, J.-Y.; Min, Z.-D.; Mizuno, M.; Tanaka, T.; Iinuma, M. Phytochemistry 1988, 27, 3674-3675. ^sKitagawa, I.; Mahmud, T.; Kobayashi, M.; Roemantyo; Shibuya, H. *Chem. Pharm. Bull.* **1995**, *43*, 365–367. McLaughlin, J. L.; Miller, R. W.; Powell, R. G.; Smith, C. R., Jr. J. Nat. Prod. **1981**, *44*, 312–319. "Appendino, G.; Ozen, H. C.; Gariboldi, P.; Gabetta, B.; Bombardelli, E. Fitoterapia 1992, 64(S1), 47-51. 'Appendino, G.; Cravotto, G.; Enriu, R.; Gariboldi, P.; Barboni, L.; Torregiani, E.; Gabetta, B.; Zini, G.; Bombardelli, E. J. Nat. Prod. 1994, 57, 607-613. "Gunawardana, G. P.; Premachandran, U.; Burres, N. Š.; Whittern, D. N.; Henry, R.; Spanton, S.; McAlpine, J. B. J. Nat. Prod. 1992, 55, 1686–1689. *Soto, J.; Castedo, L. Phytochemistry 1998, 47, 817–819. 'Della Casa de Marcano, D. P.; Halsall, T. G. J. Chem. Soc., Chem. Commun. 1975, 365–366. Min, Z. D.; Jiang, H.; Liang, J. Y. Acta Pharm. Sin. (Yaoxue Xuebao) 1989, 24, 673-677. ^{aa}Zhang, H.; Mu, Q.; Xiang, W.; Yao, P.; Sun, H.; Yoshio, T. Phytochemistry 1997, 44, 911-915. ^{bb}Barboni, L.; Pierluigi, G.; Torregiani, E.; Appendino, G.; Gabetta, B.; Zini, G.; Bombardelli, E. Phytochemistry 1993, 33, 145–150. Structure should be revised to the corresponding 11(15-1)-abeo-taxoid; see Table 10 and: Appendino, G.; Barboni, L.; Gariboldi, P.; Bombardelli, E.; Gabetta, B.; Viterbo, D. J. Chem. Soc., Chem. Commun. 1993, 1587–1589. "Chen, W. M.; Zhang, P. L.; Zhou, J. Y. Yaoxue Xuebao **1994**, 29, 207–214. ^{dd}Morita, H.; Gonda, A.; Wei, L.; Yamamura, Y.; Wakabayashi, H.; Takeya, K.; Itokawa, H. *Phytochemistry* **1998**, 48, 857–862. ^{ee}Yang, S.-J.; Fang, J.-M.; Cheng, Y.-S. *Phytochemistry* **1999**, 50, 127–130. ^{fd}Chen, W. M.; Zhou, J. Y.; Zhang, P. L.; Fang, Q. C. Chin. Chem. Lett. 1993, 4, 699-702. #Chu, A.; Zajicek, J.; Davin, L. B.; Lewis, N. G.; Croteau, R. B. Phytochemistry 1992, 31, 4249-4252. Structure revision to the corresponding $11(15 \rightarrow 1)$ -*abeo*-taxoid has been suggested: Huang, K.; Liang, J.; Gunatilaka, A. A. L. J. Chin. Pharm. University (Zhongguo Yaoke Daxue Xuebao) **1998**, 29, 259–266. ^{hh}Kobayashi, J.; Hosoyama, H.; Katsui, T.; Yoshida, N.; Shigemori, H. Tetrahedron 1996, 52, 5391-5396.

Table 9. Taxoids with an Oxetane Ring and a Phenylisoserine C-13 Side Chain

name	molecular formula	MW	R_1	R_2	R_3	R_4	R_5	R_6	R ₇	R ₈	[α] _D	mp (°C)	plant source	plant part; % yield	refs
N-methyltaxol C	C ₄₇ H ₅₉ NO ₁₄	861	OH	Н	=0	OAc	a	Me	Ph	Bz	-52.7° (CHCl ₃)	225-228	T. x media	rt	0
											-16.52° (MeOH)	134	T. baccata	сс	g
taxuspinanane A	C47H59NO14	861	OH	Η	=0	OAc	d	Н	Ph	Bz	-40.2° (MeOH)		T. cuspidata	st; 2.0×10^{-3}	t
N-methylpaclitaxel, taxuspinanane I	C ₄₈ H ₅₃ NO ₁₄	867	OH	Η	=0	OAc	Ph	Me	Ph	Bz	-71° (CHCl ₃)		T. cuspidata	st; 8.0×10^{-5}	и
10-(β-hydroxybutyryl)-10- deacetylcephalomannine	C ₄₇ H ₅₇ NO ₁₅	875	OH	Н	=0	f	с	Н	Ph	Bz			T. baccata	bk; 1.8×10^{-3}	С
N-debenzoyl-N-cinnamoyl-taxol	C ₄₉ H ₅₃ NO ₁₄	879	OH	Н	=0	OAc	h	Н	Ph	Bz	-16.6° (MeOH)	180	T. x media	rt	1
10-(β-hydroxybutyryl)-10- deacetyltaxol	C ₄₉ H ₅₅ NO ₁₅	897	OH	Η	=0	f	Ph	Н	Ph	Bz			T. baccata	bk; 2.6×10^{-3}	С
7-(β -xylosyl)-10-deacetyltaxol D	C47H59NO17	909	e	Η	=0	OH	b	Н	Ph	Bz	-14.3° (MeOH)		T. baccata	bk	V
7-(β -xylosyl)-10-deacetyltaxol C	$C_{49}H_{63}NO_{17}$	937	e	Η	=0	OH	а	Н	Ph	Bz	+3° (pyridine)	215-217	T. baccata	bk; 2.8×10^{-3}	С
7-(β -xylosyl)-10-deacetyltaxol	C ₅₀ H ₅₇ NO ₁₇	943	e	Η	=0	OH	Ph	Н	Ph	Bz	-2° (pyridine)	246-248	T. baccata	$\begin{array}{l} bk;\\ 2.2 \times 10^{-2} \end{array}$	С
7-(β -xylosyl)cephalomannine	$C_{50}H_{61}NO_{18}$	963	e	Η	=0	OAc	с	Н	Ph	Bz	-26° (pyridine)		T. baccata	bk; 3.9×10^{-3}	С
7-(β -xylosyl)taxol C	$C_{51}H_{65}NO_{18}$	979	e	Η	=0	OAc	а	Н	Ph	Bz	-4° (pyridine)	229-231	T. baccata	bk; 2.9×10^{-3}	С
7-(β-xylosyl)taxol	$C_{52}H_{59}NO_{18}$	985	e	Η	=0	OAc	Ph	Η	Ph	Bz	-23° (pyridine)	236-238	T. baccata	bk; 5.8×10^{-3}	С

^a Gabetta, B.; Orsini, P.; Peterlongo, F.; Appendino, G. Phytochemistry 1998, 47, 1325-1329. ^bMcLaughlin, J. L.; Miller, R. W.; Powell, R. G.; Smith, C. R., Jr. J. Nat. Prod. 1981, 44, 312-319. Senilh, V.; Blechert, S.; Colin, M.; Guenard, D.; Picot, F.; Potier, P.; Varenne, P. J. Nat. Prod. 1984, 47, 131-137. dZhang, H.; Takeda, Y.; Matsumoto, T.; Minami, Y.; Yoshida, K.; Xiang, W.; Mu, Q.; Sun, H. Heterocycles 1994, 38, 975-980. Morita, H.; Gonda, A.; Wei, L.; Yamamura, Y.; Wakabayashi, H.; Takeya, K.; Itokawa, H. Planta Med. 1998, 64, 183-186. Huang, C. H. O.; Kingston, D. G. I.; Magri, N. F.; Samaranayake, G. J. Nat. Prod. 1986, 49, 665-669. Ma, W.; Park, G. L.; Gomez, G. A.; Nieder, M. H.; Adams, T. L.; Aynsley, J. S.; Sahai, O. P.; Smith, R. J.; Stahlhut, R. W.; Hylands, P. J.; Bitsch, F.; Shackleton, C. J. Nat. Prod. **1994**, *57*, 116–122. ^hAppendino, G.; Cravotto, G.; Enriu, R.; Gariboldi, P.; Barboni, L.; Torregiani, E.; Gabetta, B.; Zini, G.; Bombardelli, E. J. Nat. Prod. 1994, 57, 607-613. Miller, R. W.; Powell, R. G.; Smith, C. R., Jr.; Arnold, E.; Clardy, J. J. Org. Chem. 1981, 46, 1469–1474. Powell, R. G.; Miller, R. W.; Smith, C. R., Jr. J. Chem. Soc., Chem. Commun. 1979, 102–104. ^kChauviere, G.; Guenard, D.; Picot, F.; Senilh, V.; Potier, P. Acad. Sci. Paris, Ser. II 1981, 293, 501-503. Gabetta, B.; Fuzzatti, N.; Orsini, P.; Peterlongo, F.; Appendino, G.; Vander Velde, D. J. Nat. Prod. 1999, 62, 219–223. "De Bellis, P.; Lovati, M.; Pace, R.; Peterlongo, F.; Zini, G. F. Fitoterapia 1995, 66, 521-524. "Zhang, H.-J.; Takeda, Y.; Minami, Y.; Yoshida, K.; Unemi, N.; Mu, Q.; Xiang, W.; Matsumoto, T.; Sun, H.-D. Yunnan Zhiwu Yanjiu **1993**, *15*, 424–426. ^{*p*}Barboni, L.; Gariboldi, P.; Torregiani, E.; Appendino, G.; Gabetta, B.; Bombardelli, E. Phytochemistry **1994**, *36*, 987–990. ^{*p*}Gabetta, B.; Peterlongo, F.; Zini, G.; Barboni, L.; Rafaiani, G.; Ranzuglia, P.; Torregiani, E.; Appendino, G.; Cravotto, G. Phytochemistry 1995, 40, 1825-1828. Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325–2327. 'Kingston, D. G. I.; Hawkins, D. R.; Ovington, L. J. Nat. Prod. 1982, 45, 466–470. *Chen, W. M.; Zhou, J. Y.; Zhang, P. L.; Fang, Q. C. Chin. Chem. Lett. 1993, 4, 699–702. 'Morita, H.; Gonda, A.; Wei, L.; Yamamura, Y.; Takeya, K.; Itokawa, H. J. Nat. Prod. 1997, 60, 390-392. "Morita, H.; Gonda, A.; Wei, L.; Yamamura, Y.; Wakabayashi, H.; Takeya, K.; Itokawa, H. Phytochemistry 1998, 48, 857–862. 'Guo, Y.; Diallo, B.; Jaziri, M.; Vanhaelen-Fastre, R.; Vanhaelen, M.; Ottinger, R. J. Nat. Prod. 1995, 58, 1906–1912.

Taxol Biosynthesis

Knowledge of the biosynthesis of taxol has made significant advances over the past few years, driven in part by the desire to increase the yield of taxol production. Taxol production has been observed not only in various Taxus species, but also in the endophytic fungi Taxomyces an*dreanae*,⁵¹ and in a number of unrelated fungal endophytes including Fusarium, Alternaria, Pithomyces, and others.52 In another study Alternaria alternata ssp. Taxus hicksii, was found to be the preferred source of taxol, with fermentation yielding 116 mg of taxol per liter.⁵³ Plant tissue culture production of taxol is also being investigated by several groups, with yields of up to 55 mg of taxol per liter per week;⁵⁴ the subject has been reviewed recently.⁵⁵ These yields could presumably be significantly enhanced by genetic engineering based on a knowledge of the biosynthetic pathway of taxol and on the key enzymes involved in it.

The first studies of the biosynthesis of taxol were carried out by feeding studies using labeled acetate, mevalonate, and phenylalanine with *T. canadensis*⁵⁶ although the incorporations were low, ranging from 0.02 to 0.12%. The best incorporation of mevalonate was found with new growth *T. canadensis* leaves. Incorporation of taxol formed from $[^{3}H]$ -L-phenylalanine and $[^{14}C]$ mevalonate gave a product with a $^{3}H/^{14}C$ ratio of 4.4, which was reduced to 1.75 by removal of the side chain. This indicated that the phenylalanine was incorporated into both the side chain and also into the 2-benzoate group.

More specific information on the biosynthesis of the taxol side chain came from work by Floss and his collaborators using variously labeled putative side chain precursors.⁵⁷ Benzoic acid was incorporated primarily into the side chain (88% of total label) versus the 2-position (11% of the label). More significantly, ring-deuterated α -phenylalanine, β phenylalanine, and phenylisoserine were all efficiently incorporated, while neither trans-cinnamic acid (26) nor its cis-isomer (27) nor its epoxide (28) were incorporated. This result indicates that the rearrangement of α -phenylalanine (23) to β -phenylalanine (24) cannot proceed via cinnamic acid or its epoxide, and must thus go by an intramolecular rearrangement of α -phenylalanine to β phenylalanine and thence to phenylisoserine (25) (Scheme 2). Interestingly, the intact \hat{N} -benzoyl side chain was not incorporated directly, since a ring perdeuterated precursor (²H₁₀) only gave pentadeuterated taxol.

Further information on the mode of attachment of the side chain to baccatin III came from studies with [10-acetyl-

Table 10. Taxoids with an Opened Oxetane Ring

name	molecular formula	MW	R_1	R_2	R ₃	R_4	R_5	R_6	R ₇	[α] _D	mp (°C)	plant source	plant part; % yield	refs
$5\alpha,7\beta,9\alpha,10\beta,13\alpha$ -pentaacetoxy- 2α -20-dihydroxytax-11-ene, taxumairol F	$C_{30}H_{44}O_{12}$	596	Н	OH	Н	Η	OAc	OAc	OAc	+54.9° (CHCl ₃)		T. mairei	rt	а
taxuspine L	$C_{32}H_{46}O_{13}$	638	Η	OAc	Н	Η	OAc	OAc	OAc	+108° (CHCl ₃)		T. cuspidata	st; $1.4 imes10^{-4}$	b
taxchin A	$C_{32}H_{46}O_{13}$	638	Η	OH	Η	Ac	OAc	OAc	OAc	(0)	284-286	T. chinensis	$3.2 imes 10^{-4}$	С
taxuspine R	$C_{32}H_{47}O_{14}$	655	OH	OH	Η	Ac	OAc	OAc	OAc	+68° (CHCl ₃)		T. cuspidata	st; $2.6 imes 10^{-4}$	d
5α , 7β , 9α , 10β , 13α -pentaacetoxy- 2\alpha-benzoyloxy- 4α , 20 - dihydroxytax-11-ene	$C_{37}H_{48}O_{14}$	716	Η	OBz	OH	Η	OAc	OAc	OAc	-30° (CHCl ₃)	114-115	T. mairei	hw	е
7β , 9α , 10β , 13α , 20 -pentaacetoxy- 2 α -benzoyloxy- 4α , 5α - dihydroxytax-11-ene	$C_{37}H_{48}O_{14}$	716	Η	OBz	ОН	Ac	OH	OAc	OAc	-37° (CHCl ₃)	122-123	T. mairei	hw	е
5α,7β,9α,10β,13α-pentaacetoxy- 20-(benzolyoxy)-2α,4α- dihydroxytax-11-ene, taxumairol A	C ₃₇ H ₄₈ O ₁₄	716	Н	ОН	OH	Bz	OAc	OAc	OAc	+46° (MeOH)		T. mairei	rt	f
taxchin B	$C_{41}H_{52}O_{14}$	768	Η	OAc	Н	a	OAc	OAc	OAc	+39.74° (CHCl ₃)	124-126	T. chinensis	st, lv; 8.3 \times 10^{-5}	g

^a Shen, Y.-C.; Chen, C.-Y. *Phytochemistry* **1997**, *44*, 1527–1533. ^bWang, X.-X.; Shigemori, H.; Kobayashi, J. *Tetrahedron* **1996**, *52*, 2337–2342. 'Li, B.; Tanaka, K.; Fuji, K.; Sun, H.; Taga, T. *Chem. Pharm. Bull.* **1993**, *41*, 1672–1673. ^dWang, X.-X.; Shigemori, H.; Kobayashi, J. *Tetrahedron* **1996**, *52*, 12159–12164. ^eLiang, J.; Kingston, D. G. I. *J. Nat. Prod.* **1993**, *56*, 594–599. ^fShen, Y.-C.; Tai, H.-R.; Chen, C.-Y. *J. Nat. Prod.* **1996**, *59*, 173–176. ^gTanaka, K.; Fuji, K.; Yokoi, T.; Shingu, T.; Li, B.; Sun, H. *Chem. Pharm. Bull.* **1994**, *42*, 1539–1541.

Scheme 2. Biosynthetic Pathway of the Taxoid Phenylisoserine Side Chain

²H₃,13-²H]baccatin III and [13-³H]baccatin III.^{57a} Incorporation of all four deuterium atoms from the first baccatin III indicated that it is not hydrolyzed to 10-deacetylbaccatin III prior to incorporation. An experiment with [benzoyl-¹⁴C]-labeled side chain showed that the *N*-benzoyl group was not significantly hydrolyzed under the conditions of the incorporation. This confirmed that the earlier failure to incorporate intact side chain was not due to its rapid hydrolysis and, thus, that intact side chain is not a precursor to taxol. Indeed, [²H₈]-N-debenzoyltaxol was largely incorporated intact into taxol, confirming its intermediacy in the biosynthetic pathway. Although the phenylisoserine side chain was incorporated intact in these experiments, β -phenylalanine was incorporated even more efficiently, and it is thus not clear at this point whether hydroxylation at the 2'-position occurs before or after attachment of the side chain.58

The intact incorporation of baccatin III noted above is consistent with results on the cell-free acetylation of 10deacetylbaccatin III by crude extracts from the roots of *T. baccata* saplings.⁵⁹ Very recently, the enzyme acetylcoenzyme A:10-hydroxytaxane *O*-acetyltransferase has been purified and characterized from cell suspensions of $T. chinensis.^{60}$

The formation of the tetracyclic diterpenoid moiety of the taxane diterpenoids was surprisingly found not to arise from mevalonate, despite the incorporation of [14C]mevalonate into taxol observed by Zamir et al.⁵⁶ The evidence for the nonmevalonoid nature of the taxoid skeleton came from studies of the incorporation of [U-13C6]glucose and $[1,2^{-13}C_2]$ acetate into the taxoid taxayunnanine in *T. chin*ensis (Scheme 3).61 [1,2-13C2]Acetate was incorporated efficiently into the four acetate groups of taxayunnanine C but not into the skeleton itself. Since mevalonic acid is formed from acetate, this lack of incorporation of acetate suggests that mevalonic acid is not a precursor to taxayunnanine C. Definitive proof of this came from the experiment with [U-¹³C₆]glucose, which clearly showed the incorporation of an intact 3-carbon precursor from glucose, ruling out mevalonic acid which is formed from the 2-carbon precursor acetate. The presumed isopentenyl pyrophosphate precursor to the geranylgeranyl diphosphate building block must thus arise by condensation of 2-carbon unit and a 3-carbon unit, as proposed by Rohmer

name	molecular formula	MW	R ₁	R_2	R_3	R_4	R_5	R ₆	[α] _D	mp (°C)	plant source	plant part; % yield	refs
7-debenzoyloxy-10-	$C_{22}H_{34}O_{6}$	394	Н	Н	Н	α-OAc	OH	OH	-24°	160-162	T. wallichiana	lv	а
deacetylbrevitoliol taxacustone	$C_{24}H_{34}O_8$	450	β -OAc	Н	Н	β -OAc	OH	=0	(MeOH) -14.6° (CHCl ₂)	268-271	T. cuspidata	lv, st	b
13-acetyl-2-deacetoxy-10- debenzoyltaxchinin A, taxayyallin E	$C_{26}H_{38}O_9$	494	Н	Н	OAc	α-ΟΑς	OH	OAc	(011013)	124-125	T. wallichiana	lv	с
10-acetyl-2-deacetoxy-10- debenzoyltaxchinin A,	$C_{26}H_{38}O_9$	494	Н	Н	OAc	α-OAc	OAc	OH		72-74	T. wallichiana	lv	с
taxuspine O	$C_{26}H_{36}O_{10}\\$	508	α-OAc	Н	ОН	α-OAc	OAc	=0	+79.7° (MeOH)		T. cuspidata	st	d
10-debenzoyl-2α-acetoxy- brevifoliol	$C_{26}H_{38}O_{10}$	510	α-OAc	Н	OAc	α-OAc	OH	OH	$+32.6^{\circ}$ (MeOH)	180	T. wallichiana	lv	е
9-deacetyl-9-benzoyl-10- debenzoylbrevifoliol	$C_{29}H_{38}O_8$	514	Н	Н	OAc	α-OBz	OH	OH	+18° (CHCl ₃)	152	T. brevifolia		f
teixidol	$C_{28}H_{40}O_{10}$	536	α-OAc	Н	Н	α-OAc	OAc	OAc	-15.91° (CHCl ₃)	159	T. baccata	lv	g
taxchinin G	$C_{28}H_{40}O_{11}$	552	α-OAc	Н	OAc	α-OAc	OH	OAc		140-143	T. chinensis	8.0×10^{-5}	h
taxuspine Y	C ₃₁ H ₃₈ O ₉	554	α-OAc	Н	Н	α-OAc	OBz	=0	-25.4° (CHCl ₃)		T. cuspidata	st; 2.0×10^{-4}	i
9-deacetyl-9-benzoyl-10- debenzoyltaxchinin A	$C_{31}H_{40}O_{10}$	572	α-OAc	H	OAc	α-OBz	ОН	ОН	+19.4° (MeOH)		T. baccata	bk; 2.3×10^{-3}	j
5,10,13-triacetyi-10- debenzoylbrevifoliol	$C_{30}H_{42}O_{11}$	556	н	Ас			OAc	OAC	(CHCl ₃)	200-203	T. wanichiana	IV Iv	K J
13-acetylbrevifoliol	$C_{33}H_{42}O_{10}$	598	Н	Н	OAc	α-OAc	OBz	OAc	+8° (MeOH)	200 203	T. wallichiana	IV	a
9-benzoyl-2-deacetoxy-9- deacetyl-10-debenzoyl- 10,13-diacetyltaxchinin A, taxawallin D	$C_{33}H_{42}O_{10}$	598	Н	Н	OAc	α-OBz	OAc	OAc		122-124	T. wallichiana	lv	С
taxuspinanane B	$C_{33}H_{40}O_{11}$	612	α-OAc	Η	OAc	α-OAc	OBz	=0	+26.6° (MeOH)		T. cuspidata	st; 3.0×10^{-3}	т
taxchinin A	$C_{33}H_{42}O_{11}$	614	α-OAc	Н	OAc	α-OAc	OBz	OH	-34.62° (CH ₂ Cl ₂)	208-210	T. chinensis	lv, st; 4.7×10^{-3}	n
									-34.62° (CH ₂ Cl ₂)	208-210	T. chinensis	lv, st	0
13-acetyl-9-deacetyl-9- benzoyl-10-debenzoyl- taxchinin A	$C_{33}H_{42}O_{11}$	614	α-OAc	Н	OAc	α-OBz	OH	OAc	+14.9° (CHCl ₃)	121-122	T. chinensis	bk; lv; 1.9×10^{-6}	р
2α -acetoxybrevifoliol	$C_{33}H_{42}O_{11}$	614	α-OAc	Н	OAc	α-OAc	OBz	OH	-24° (CHCl ₃)	198	T. baccata	sd	q
taxuspine M	$C_{35}H_{44}O_{10}$	624	Н	а	OAc	α-OAc	OH	OAc	+35° (CHCl ₃)		T. cuspidata	st; $1.6 imes 10^{-4}$	r
taxchinin D taxuspine J	$\begin{array}{c} C_{35}H_{44}O_{12} \\ C_{37}H_{46}O_{11} \end{array}$	656 666	α-OAc H	H a	OAc OAc	α-OAc α-OAc	OBz OAc	OAc OAc		138-141	T. chinensis T. cuspidata	$1.8 imes 10^{-3}$ st, lv	h s
taxamedin A taxchinin H	$\begin{array}{c} C_{37}H_{46}O_{11} \\ C_{40}H_{46}O_{10} \end{array}$	666 686	α-OAc H	a a	H OAc	α-OAc α-OAc	OAc OBz	OAc OH	-65.29°	115-118	T.x media T. chinensis	lv st, lv;	t u
5-cinnamoylbrevifoliol	C40H46O10	686	Н	а	OAc	α-OAc	OBz	ОН	$(CHCl_3)$ -41.5°			$1.1 imes 10^{-3}$ lv	е
(13-deacety)taxuspine A, 5-cinnamoyl-2-deacetoxy- taxchinin A, taxawallin C)									$(CHCI_3)$ -43.58° (CHCL)	106-107	T. wallichiana	lv	с
(-)- 2α -acetoxy- $2'$,7-dideacetoxy- 1-hydroxy- $11(15 \rightarrow 1)$ - <i>abeo</i> - outtragnication	C ₃₉ H ₅₃ NO ₁₁	711	α-OAc	b	Н	α-OAc	OAc	OAc	-46° (CHCl ₃)		T. baccata	lv	V
5α - O - $(\beta$ -D-glucopyranosyl)- 10β -	$C_{37}H_{48}O_{14}$	716	β -OAc	d	Н	β -OAc	OBz	=0	-92.6° (CHCla)	178-180	T. cuspidata	lv, st	b
taxuspine A (10β-benzoyloxy-	$C_{42}H_{48}O_{11}$	728	Н	а	OAc	α-OAc	OBz	OAc	-3.4°		T. cuspidata	st; 1.7×10^{-3}	W
7β ,9 α ,13 α -triacetoxy-11(15 \rightarrow 1)- abeo-taxa-4(20) 11-diene)									(011013)		T. brevifolia	lv	1
taxchinin E	$C_{42}H_{48}O_{12}$	744	α-OAc	Н	OAc	α-OAc	OBz	a	-17.49° (CHCl ₃)	134-136	T. chinensis	st, lv; 1.8×10^{-4}	и
10β-benzoyloxy-1β-hydroxy- 5α-(3'-methylamino-3'- phenyl)propanoxy-7β,9α,13α- triacetoxy-11 (15→1)- <i>abeo</i> -	$C_{43}H_{53}O_{11}$	745	Η	с	OAc	α-OAc	OBz	OAc	3/		T. brevifolia	lv	1

taxa-4(20),11-diene

Table 11. (Continued)

name	molecular formula	MW	R_1	R_2	R_3	R_4	R_5	R ₆	[α] _D	mp (°C)	plant source	plant part; % yield	refs
10 β -benzoyloxy-5 α - (3'-dimethylamino-3'- phenyl)propanoxy-1 β -hydroxy- 7 β ,9 α ,13 α -triacetoxy-11 (15 \rightarrow 1)- <i>abeo</i> -taxa-4(20),11-diene	$C_{44}H_{55}O_{11}$	759	Η	b	OAc	α-OAc	OBz	OAc			T. brevifolia	lv	1
2-deacetyl-2α-benzoyl- 5,13-diacetyltaxchinin A	$C_{42}H_{48}O_{13}$	760	α-OBz	Ac	OAc	α-OAc	OBz	OAc	-21.5°	200-203	T. brevifolia	bk; $2.0 imes 10^{-4}$	X

^a Barboni, L.; Pierluigi, G.; Torregiani, E.; G., A.; Gabetta, B.; Zini, G.; Bombardelli, E. Phytochemistry 1993, 33, 145-150. Structure corrected to the 11(15→1)-*abeo*-taxoid skeleton by: Appendino, G.; Barboni, L.; Gariboldi, P.; Bombardelli, E.; Gabetta, B.; Viterbo, D. *J. Chem. Soc., Chem. Commun.* **1993**, 1587–1589. ^bTong, X.-J.; Fang, W.-S.; Zhou, J.-Y.; He, C.-H.; Chen, W.-M.; Fang, Q.-C. *J. Nat. Prod.* **1995**, *58*, 233–238. ^cZhang, J. Z.; Fang, Q. C.; Liang, X. T.; Kong, M.; Yi He, W. Chin. Chem. Lett. **1995**, *6*, 971–974. ^dKobayashi, J.; Hosoyama, H.; Katsui, T.; Yoshida, N.; Shigemori, H. Tetrahedron 1996, 52, 5391–5396. Barboni, L.; Gariboldi, P.; Torregiani, E.; Appendino, G.; Varese, M.; Gabetta, B.; Bombardelli, E. J. Nat. Prod. 1995, 58, 934-939. Chen, R.; Kingston, D. G. I. J. Nat. Prod. 1994, 57, 1017–1021. Soto, J.; Fuentes, M.; Castedo, L. Phytochemistry 1996, 43, 313–314. Li, B.; Tanaka, K.; Fuji, K.; Sun, H.; Taga, T. Chem. Pharm. Bull. 1993, 41, 1672-1673. 'Shigemori, H.; Wang, X.-X.; Yoshida, N.; Kobayashi, J. Chem. Pharm. Bull. 1997, 45, 1205-1208. JGuo, Y.; Diallo, B.; Jaziri, M.; Vanhaelen-Fastre, R.; Vanhaelen, M. J. Nat. Prod. 1996, 59, 169-172. Chattopadhyay, S. K.; Tripathi, V.; Sharma, R. P.; Shawl, A. S.; Joshi, B. S.; Roy, R. Phytochemistry 1999, 50, 131–133. 'Balza, F.; Tachibana, S.; Barrios, H.; Towers, G. H. N. Phytochemistry 1991, 30, 1613-1614. Chu, A.; Furlan, M.; Davin, L. B.; Zajicek, J.; Towers, G. H. N.; Soucy-Breau, C. M.; Rettig, S. J.; Croteau, R.; Lewis, N. G. Phytochemistry 1994, 36, 975-985. Structure corrected to the 11(15-1)-abeo-taxoid skeleton by: Appendino, G.; Barboni, L.; Gariboldi, P.; Bombardelli, E.; Gabetta, B.; Viterbo, D. J. Chem. Soc., Chem. Commun. **1993**, 1587–1589. ^mMorita, H.; Gonda, A.; Wei, L.; Yamamura, Y.; Takeya, K.; Itokawa, H. J. Nat. Prod. **1997**, 60, 390–392. ⁿFuji, K.; Tanaka, K.; Li, B.; Shingu, T.; Sun, H.; Taga, T. Tetrahedron Lett. 1992, 33, 7915–7916. "Fuji, K.; Tanaka, K.; Li, B.; Shingu, T.; Sun, H.; Taga, T. J. Nat. Prod. 1993, 56, 1520–1531. PShi, Q.-W.; Oritani, T.; Sugiyama, T.; Kiyota, H. Planta Med. 1998, 64, 766–769. Appendino, G.; Tagliapietra, S.; Ozen, H.-C.; Gariboldi, P.; Gabetta, B.; Bombardelli, E. J. Nat. Prod. 1993, 56, 514-520. Revision of structure suggested by: Appendino, G.; Barboni, L.; Gariboldi, P.; Bombardelli, E.; Gabetta, B.; Viterbo, D. J. Chem. Soc., Chem. Commun. 1993, 1587-1589. Wang, X.-X.; Shigemori, H.; Kobayashi, J. Tetrahedron 1996, 52, 2337-2342. Kobayashi, J.; Inubushi, A.; Hosoyama, H.; Yoshida, N.; Sasaki, T.; Shigemori, H. *Tetrahedron* **1995**, *51*, 5971–5978. 'Gao, Y.-L.; Zhou, J.-Y.; Ding, Y.; Fang, Q.-C. *Chin. Chem. Lett.* **1997**, *8*, 1057–1058. 'Tanaka, K.; Fuji, K.; Yokoi, T.; Shingu, T.; Li, B.; Sun, H. *Chem. Pharm. Bull.* **1994**, *42*, 1539–1541. 'Doss, R. P.; Carney, J. R.; Shanks, C. H., Jr.; Williamson, R. T.; Chamberlain, J. D. J. Nat. Prod. 1997, 60, 1130-1133. "Kobayashi, J.; Ogiwara, A.; Hosoyama, H.; Shigemori, H.; Yoshida, N.; Sasaki, T.; Li, Y.; Iwasaki, S.; Naito, M.; Tsuruo, T. Tetrahedron 1994, 50, 7401–7416. *Rao, K. V.; Juchum, J. Phytochemistry 1998, 47, 1315-1324.

Scheme 3. Incorporation of Glucose and Acetate into the Taxayunnanine Skeleton

et al.⁶² for the formation of isoprenoids in eubacteria (Scheme 3). Although a comparable experiment has not been performed on taxol, it seems likely that taxol is also biosynthesized by the same pathway.

The first committed step in the biosynthesis of taxol has been elucidated by Croteau and his collaborators⁶³ as the cyclization of geranylgeranyl diphosphate (**31**) to taxa-4(5),11(12)-diene (**35**, Scheme 4). The previously unknown taxadiene **35** was first observed as a radioactive intermediate formed from [1-³H]geranylgeranyl diphosphate by a cell-free preparation from sapling yew stems. It was then shown that it was further converted by stem sections into 10-deacetylbaccatin III and into taxol. Its structure was elucidated after a larger quantity (1 mg) was isolated by radiochemically guided fractionation of the radioactive intermediate in a mixture with a hydrocarbon fraction from 750 kg of *T. brevifolia* bark! The low cyclization activity in *T. brevifolia* stems, together with the low levels of **35** found in the bark, suggest that the cyclization of geranylgeranyl diphosphate to **35** is slow relative to subsequent oxygenations and is thus an important step for genetic manipulation.

The formation of taxa-4(5),11(12)-diene **35** as the initial cyclization product was surprising, since the isomeric taxa-4(20), 11(12)-diene **36** had been assumed to be the initial cyclization product on the basis of the common occurrence of taxoids with a 4(20)-double bond. The mechanism of the cyclization was thus investigated in more detail⁶⁴ and it was shown that neither the diene **36** nor casbene (**37**) nor verticillene (**38**) served as intermediates. Cyclization thus must occur via the transient verticillyl intermediate **32**, which transfers the C-11 α proton via an enzyme-bound

Table 12. $11(15 \rightarrow 1)$ -*abeo*-Taxoids with an Oxetane Ring

name	molecular formula	MW	R_1	R_2	R_3	R_4	R_5	R ₆	[α] _D	mp (°C)	plant source	plant part; % yield	refs
7,13-dideacetyl-9,10- debenzovltaxchinin C	$C_{29}H_{38}O_{10}$	546	OBz	OAc	OH	OH	Η	Н	-15° (CHCla)	162	T. brevifolia		а
taxacustin (10,13-deacetyl- <i>abeo</i> -	$C_{28}H_{40}O_{12}$	568	OAc	OAc	OAc	OAc	Н	Н	-38.4° -34°	225 - 227 220 - 222	T. cuspidata T. wallichiana	lv, tw lv	b, c d
baccatin 1V) 9α -(benzoyloxy)- 2α , 4α - diacetoxy- 5β ,20-epoxy- 1β , 7β ,10 β ,13 α -tetrahydroxy- 11(15 \rightarrow 1)- <i>abeo</i> -taxene,	$C_{31}H_{40}O_{11}$	588	OAc	OAc	ОН	OBz	Н	Н	(MeOH) -8.5° (MeOH)		T. mairei	rt	е
taxumairol K 10β-benzoyloxy-2α,4α- diacetoxy-5β,20-epoxy- 1β,7β,9α,13α-tetrahydroxy- 11(15-1), abectaxope	$C_{31}H_{40}O_{11}$	588	OAc	OAc	ОН	ОН	Bz	Н		242-243	T. brevifolia	bk; 4.0×10^{-3}	f
(7,9-dideacetyltaxayuntin) 9-deacetyltaxayuntin E, taxusninanane F	$C_{31}H_{40}O_{11}$	588	OBz	OAc	OAc	ОН	Н	Н	-23.2° (CHCl ₂)	266-268	T. yunnanensis T. cuspidata.	bk st	g h
2α-debenzoyl-2α- acetyltaxayuntin A, tayayuntin B	$C_{31}H_{40}O_{11}$	588	OAc	OAc	OBz	OH	Н	Η	+25.1° (CHCl ₃)	225-228	T. yunnanensis	bk	i
7,9,10-trideacetyl- <i>abeo</i> -	$C_{31}H_{40}O_{11}$	588	OBz	OAc	OH	OH	Н	Ac	-26° (CHCla)		T. baccata	lv	j
taxayuntin H	$C_{30}H_{42}O_{13} \\$	610	OAc	OAc	OAc	OAc	Ac	Н	-66.7°	249-250	T. yunnanensis	bk	k
taxuyunnanine F	$C_{30}H_{42}O_{13}$	610	OAc	OAc	OAc	OAc	Н	Ac	-22.6°		T. yunnanensis	rt	1
13-decinnamoyl-9- deacetyltaychinin B	$C_{33}H_{42}O_{12}$	630	OAc	OAc	OAc	OH	Bz	Н	(CIICI3)		T. wallichiana	bk	т
taxayuntin E	$C_{33}H_{42}O_{12} \\$	630	OBz	OAc	OAc	OAc	Н	Н	+8.7° (MeOH)	185-186	T. yunnanensis	lv, st	n
taxayuntin F	$C_{33}H_{42}O_{12}$	630	OAc	OAc	OAc	OBz	Н	Н	(MeOH)	185-186	T. yunnanensis	lv, st	n
(taxchinin L)									-40°	263-264	T. chinensis	lv, st;	0
taxuspine Q	$C_{33}H_{46}O_{13}$	650	OAc	OAc	OAc	OAc	b	Н	$(CHCI_3)$ -8.2°		T. cuspidata	st;	р
4α , 7β, 9α-trideacetyl- 2α, 7β-dibenzoyl-10β- debenzoyltaxayuntin,	$C_{36}H_{42}O_{11}$	650	OBz	OAc	OBz	ОН	Н	Н	$(CHCl_3)$ $\pm 0^{\circ}$ $(CHCl_3)$	160-163	T. yunnanensis	2.9 × 10 ⁴ bk	i
4-deacetyl-11(15→1)- <i>abeo</i> -	$C_{35}H_{44}O_{13}$	672	OBz	OH	OAc	OAc	Ac	Ac	-73.1°	222	T. x media	rt;	q
13-deacetylbaccatin VI	$C_{35}H_{44}O_{13}$	672	OAc	OAc	OAc	OAc	OBz	Н	(CHCI ₃) -38° (MeOH)	225-226	T. wallichiana	$ \frac{6.0 \times 10^{-3}}{\text{lv};} $ $ \frac{2.1 \times 10^{-2}}{\text{cm}^{-2}} $	r
(taxayunnansin A) taxayuntin	$C_{35}H_{44}O_{13}$	672	OAc	OAc	OAc	OAc	Bz	Н	-53.3°	249-250	T. yunnanensis T. yunnanensis	rt lv	l s
taxchinin M	$C_{35}H_{44}O_{13}$	672	OAc	OAc	OAc	OBz	Н	Ac	(MeOH) -19.6° $(CHCl_{2})$	239-242	T. chinensis	lv, st; 2 0 × 10 ⁻⁵	0
									(3)		T. floridana	lv; 6.0 \times 10 ⁻³	t
4 α ,7 β -diacetoxy-2 α ,9 α - dibenzoyloxy-5 β ,20-epoxy- 10 β ,13 α ,15-tri-hydroxy- 11(15 \rightarrow 1)-abco-tayene	$C_{38}H_{44}O_{12}$	692	OBz	OAc	OAc	OBz	Н	Н	-8° (CHCl ₃)		T. baccata	bk	и
13-acetyl-13-decinnamoyl- taychinin B	$C_{37}H_{46}O_{14} \\$	718	OAc	OAc	OAc	OAc	Bz	Ac	-54° (CHCl.)	243-244	T. baccata	lv	V
9-O-benzoyl-9,10-dide-O- acetyl-11(15→1)-abeo- baccatin VI	$C_{40}H_{46}O_{13}$	734	OBz	OAc	OAc	OBz	Н	Ac	-30.5° (CHCl ₃)	238	T. x media	rt; 2.4×10^{-4}	q
(taxchinin I)									-6.08° (CHCl ₃)	235-237	T. chinensis	st, lv; 6.1×10^{-4}	W
taxchinin J	$C_{42}H_{48}O_{13}$	760	OAc	OAc	OAc	OBz	Η	а	+23.36° (CHCl ₃)	238-240	T. chinensis	st, lv; 3.4×10^{-4}	W
9- <i>O</i> -benzoyl-9-de- <i>O</i> -acetyl- 11(15→1)- <i>abeo</i> -baccatin VI	$C_{42}H_{48}O_{14}$	776	OBz	OAc	OAc	OBz	Ac	Ac	-32.5° (CHCl ₂)		T. x media	rt; 2.8×10^{-4}	q
$2\alpha,7\beta$ -dibenzoxy- $5\beta,20$ -epoxy- 1β -hydroxy- $4\alpha,9\alpha,10\beta,13\alpha$ - tetraacetoxytax-11-ene	$C_{42}H_{48}O_{14}$	776	OBz	OAc	OBz	OAc	OAc	Ac	()		T. brevifolia	bk	X
2α -deacetyl- 2α -benzoyl- 13α -acetyltaxayuntin,	$C_{42}H_{48}O_{14}$	776	OBz	OAc	OAc	OAc	Bz	Ac		226-230	T. yunnanensis	bk	i

Table 12. (Continued)

name	molecular formula	MW	R_1	R_2	R_3	R_4	R_5	R ₆	[α] _D	mp (°C)	plant source	plant part; % yield	refs
taxayuntin C (2α , 10β -dibenzoxy- 5β , 20 - epoxy- 1β -hydroxy- 4α , 7β , 9α , 13α - tetraacetoxytax- 11 -ene)											T. brevifolia	bk	X
2,7-dideacetyl-2,7-dibenzoyl- taxayunnanine F	$C_{42}H_{48}O_{14}$	776	OBz	OAc	OBz	OAc	Η	Ac		203-205	T. brevifolia	bk; $1.1 imes 10^{-3}$	У
taxchinin K	$C_{42}H_{48}O_{14}$	776	OAc	OAc	OAc	OBz	Bz	Ac	-30.0° (CHCl ₃)	217-219	T. chinensis	st, lv; $4.0 imes 10^{-5}$	W
7-deacetyltaxayuntin D	$C_{45}H_{48}O_{13}$	796	OBz	OAc	OH	OBz	Bz	Ac		164-166	T. brevifolia	bk; $2.0 imes 10^{-3}$	У
7-deacetyl-7- benzoyltaxchinin I	$C_{45}H_{48}O_{13}$	796	OBz	OAc	OBz	OBz	Η	Ac		255	T. brevifolia	bk; 3.2×10^{-3}	У
taxchinin B	$C_{44}H_{50}O_{14}$	802	OAc	OAc	OAc	OAc	Bz	а	+7.40° (CH ₂ Cl ₂)	176-178	T. chinensis	lv, st	Ζ
7-deacetyl-7-benzoyl- taxayuntin C	$C_{47}H_{50}O_{14}$	838	OBz	OAc	OBz	OAc	Bz	Ac	(10 107	234-236	T. brevifolia	bk; 1.1×10^{-4}	У
9-deacetyl-9-benzoyl- taxayuntin C, taxayuntin D	$C_{47}H_{50}O_{14}$	838	OBz	OAc	OAc	OBz	Bz	Ac	-40.4° (MeOH)	210-214	T. yunnanensis	bk	i
taxchinin C	$C_{47}H_{50}O_{14}$	838	OBz	OAc	OAc	OBz	Bz	Ac	-45.6° (CH ₂ Cl ₂)	212-214	T. chinensis	lv, st	Ζ
(5 β ,20-epoxy-1 β -hydroxy- 4 α ,7 β ,13 α -triacetoxy-2 α ,9 α , 10 β -tribenzoxytax-11-ene)									ς <u>μ</u> μ		T. brevifolia	bk	X

^a Chen, R.; Kingston, D. G. I. *J. Nat. Prod.* **1994**, *57*, 1017–1021. ^bTong, X. J.; Fang, W. S.; Zhou, J. Y.; He, C. H.; Chen, W. M.; Fang, Q. C. Yaoxue Xuebao **1994**, *29*, 55–60. 'Tong, X. J.; Fang, W. S.; Zhou, J. Y.; He, C. H.; Chen, W. M.; Fang, Q. C. Chin. Chem. Lett. **1993**, 4, 887-890. dChattopadhyay, S. K.; Sharma, R. P.; Appendino, G.; Gariboldi, P. Phytochemistry 1995, 39, 869-870. Shen, Y.-C.; Chen, C.-Y.; Kuo, Y.-H. J. Nat. Prod. **1998**, 61, 838–840. ⁴Rao, K. V.; Bhakuni, R. S.; Hanuman, J. B.; Davies, R.; Johnson, J. Phytochemistry **1996**, 41, 863–866. ^gZhong, S.-Z.; Hua, Z.-X.; Fan, J.-S. J. Nat. Prod. **1996**, 59, 603–605. ^hMorita, H.; Gonda, A.; Wei, L.; Yamamura, Y.; Wakabayashi, H.; Takeya, K.; Itokawa, H. Planta Med. 1998, 64, 183-186. ⁱChen, W. M.; Zhou, J. Y.; Zhang, P. L.; Fang, Q. C. Chin. Wakabayashi, H.; Takeya, K.; Itokawa, H. Plana Med. 1996, 04, 105-100. Chen, W. M., Zhou, J. T., Zhang, T. E., Fang, Y. C. Chen, Lett. 1993, 4, 695-698. ^JAppendino, G.; Cravotto, G.; Enriu, R.; Jakupovic, J.; Gariboldi, P.; Gabetta, B.; Bombardelli, E. Phytochemistry 1994, 36, 407-411. ^kZhou, J.-Y.; Zhang, P.-L.; Chen, W.-M.; Fang, Q.-C. Phytochemistry 1998, 48, 1387-1389. ^jZhang, H.; Tadeda, Y.; Sun, H. Phytochemistry 1995, 39, 1147-1151. ^mChattopadhyay, S. K.; Saha, G. C.; Sharma, R. P.; Kumar, S.; Roy, R. Phytochemistry 1996, 42, 787-788. "Yue, Q.; Fang, Q.-C.; Liang, X.-T.; He, Č.-H. Phytochemistry 1995, 39, 871-873. "Tanaka, K.; Fuji, K.; Yokoi, T.; Šhingu, T.; Li, B.; Sun, H. Chem. Pharm. Bull. 1996, 44, 1770–1774. Wang, X.-x.; Shigemori, H.; Kobayashi, J. Tetrahedron 1996, 52, 12159–12164. Barboni, L.; Gariboldi, P.; Torregiani, E.; Appendino, G.; Cravotto, G.; Bombardelli, E.; Gabetta, B.; Viterbo, D. J. Chem. Soc., Perkin Trans. I 1994, 3233-3238. 'Barboni, L.; Pierluigi, G.; Torregiani, E.; G., A.; Gabetta, B.; Zini, G.; Bombardelli, E. *Phytochemistry* **1993**, *33*, 145–150. Structure revision to the corresponding 11(15→1)-*abeo*-taxoid by: Appendino, G.; Barboni, L.; Gariboldi, P.; Bombardelli, E.; Gabetta, B.; Viterbo, D. J. Chem. Soc., Chem. Commun. 1993, 1587–1589. Rao, C.; Zhou, J. Y.; Chen, W. M.; Lu, Y.; Zheng, Q. T. *Chin. Chem. Lett.* **1993**, *4*, 693–694. 'Rao, K. V.; Johnson, J. H. *Phytochemistry* **1998**, *49*, 1361–1364. "Guo, Y.; Vanhaelen-Fastre, R.; Diallo, B.; Vanhaelen, M.; Jaziri, M.; Homes, J.; Ottinger, R. *J. Nat. Prod.* **1995**, *58*, 1015–1023. 'Das, B.; Rao, S. P.; Srinivas, K. V. N. S.; Yadav, J. S.; Das, R. *Phytochemistry* **1995**, *38*, 671–674. "Tanaka, K.; Fuji, K.; Yokoi, T.; Shingu, T.; Li, B.; Sun, H. *Chem.* Pharm. Bull. 1994, 42, 1539-1541. *Chu, A.; Zajicek, J.; Davin, L. B.; Lewis, N. G.; Croteau, R. B. Phytochemistry 1992, 31, 4249-4252. Structure revision to the corresponding 11(15→1)-*abeo*-taxoid by: Huang, K.; Liang, J.; Gunatilaka, Å. A. L. *J. Chin. Pharm. University* (Zhongguo Yaoke Daxue Xuebao) 1998, 29, 259–266. JRao, K. V.; Juchum, J. Phytochemistry 1998, 47, 1315–1324. Fuji, K.; Tanaka, K.; Li, B.; Shingu, T.; Sun, H.; Taga, T. J. Nat. Prod. 1993, 56, 1520-1531.

Table 13. $11(15 \rightarrow 1)$ -*abeo*-Taxoids with an Opened Oxetane Ring

name	molecular formula	MW	R_1	R_2	\mathbf{R}_3	R_4	R_5	R_6	R_7	[α] _D	mp (°C)	plant source	plant part; % yield	refs
taxayuntin G	$C_{28}H_{42}O_{12}$	570	OAc	Н	OH	OAc	OAc	OH	OH	+56° (MeOH)	205-206	T. yunnanensis	lv, st	а
taxayuntin J	$C_{30}H_{44}O_{13}$	612	OH	Η	OAc	OAc	OAc	OAc	OH	-54° (MeOH)	125-127	T. yunnanensis	bk	b
taxumain A	$C_{30}H_{44}O_{13}$	612	OAc	Η	OAc	OAc	OAc	OH	OH	-11.1° (CHCl ₃)	284-286	T. mairei	tw	С
taxuchin B	C ₃₁ H ₄₁ O ₁₁ Cl	624.5	OAc	OH	Cl	OH	OBz	OH	OH	()		T. chinensis	tw, lv	d
taxumain B	$C_{32}H_{46}O_{14}$	654	OAc	Η	OAc	OAc	OAc	OH	OAc	-15.2° (CHCl ₃)		T. mairei	tw	С
yunantaxusin A	$C_{35}H_{46}O_{14}$	690	OH	OH	OAc	OAc	OAc	OBz	OH	,		T. yunnanensis	lv, st	е

^a Yue, Q.; Fang, Q. C.; Liang, X. T. *Chin. Chem. Lett.* **1995**, *6*, 225–228. ^bZhou, J.-Y.; Zhang, P.-L.; Chen, W.-M.; Fang, Q.-C. Phytochemistry **1998**, *48*, 1387–1389. Yang, S.-J.; Fang, J.-M.; Cheng, Y.-S. Phytochemistry **1999**, *50*, 127–130. ^dFang, W. S.; Fang, Q. C.; Liang, X. T.; Lu, Y.; Wu, N.; Zheng, Q. T. *Chin. Chem. Lett.* **1997**, *8*, 231–232. ^eZhang, S.; Lee, C. T.-L.; Kashiwada, Y.; Chen, K. J. Nat. Prod. **1994**, *57*, 1580–1583.

intermediate to the C-7 position to give the intermediate **33**, which then undergoes transannular B/C ring closure to the taxenyl cation **34** and proton loss to **35**. The

intramolecular transfer of the C-11 α proton to C-7 was demonstrated by the use of [10-²H]geranylgeranyl diphosphate.

Table 14. Bicyclic Taxoids

name	molecular formula	MW	struc- ture	R_1	R_2	R_3	R_4	R_5	[α] _D	mp (°C)	plant source	plant part; % yield	refs
$\overline{(3E,7E)}$ -2 α , 10 β -diacetoxy- 5 α , 13 α , 20-trihydr-oxy- 3,8- <i>seco</i> -taxa-3,7,11- trien-9-one	C ₂₄ H ₃₄ O ₈	450	В	Н	NA	NA	NA	NA	-155° (CHCl ₃)		T. chinensis	lv	а
(3 <i>E</i> ,7 <i>E</i>)-2α,10β,13α- triacetoxy-5α,20- dihydroxy-3,8- <i>seco</i> - taxa-3,7,11-trien-9-one	$C_{26}H_{36}O_9$	492	В	Ac	NA	NA	NA	NA	-60° (CHCl ₃)	77-78	T. chinensis	lv	а
7-deacetylcanadensene	$C_{28}H_{40}O_{11}$	552	Α	OAc	CH ₂ OH	α-ΟΗ	OH	OAc	+5.3° (CHCl ₃)	95-96	T. mairei	lv	b
13-deacetylcanadensene	$C_{28}H_{40}O_{11}$	552	Α	OAc	CH ₂ OH	α-ΟΗ	OAc	Н	+4.5° (CHCl ₃)	98-99	T. mairei	$\begin{array}{l} lv;\\ 3.5\times10^{-4} \end{array}$	b
taxuspine U	$C_{28}H_{40}O_{11}$	552	Α	OH	CH ₂ OH	α-OAc	OH	Ac	+18° (MeOH)		T. cuspidata	st; 1.7×10^{-5}	С
canadensene	$C_{30}H_{42}O_{12}$	594	Α	OAc	CH ₂ OH	β -OH	OAc	Ac			T. canadensis	lv	d
5-epicanadense	$C_{30}H_{42}O_{12}$	594	Α	OAc	CH_2OH	α-OH	OAc	Ac			T. canadensis	lv	е
2-deacetyltaxachitriene A	$C_{30}H_{42}O_{12}$	594	Α	OH	CH ₂ OAc	α-ΟΗ	OAc	Ac	-51° (CHCl ₃)	82-83	T. chinensis	lv	а
5-deacetyltaxachitriene B	$C_{30}H_{42}O_{12}$	594	Α	OH	CH ₂ OH	α-ΟΗ	OAc	Ac	+67.7° (MeOH)	96-98	T. chinensis	lv	f
taxachitriene A	$C_{32}H_{44}O_{13}$	636	Α	OAc	CH ₂ OAc	α-ΟΗ	OAc	Ac	-9.9° (CHCl ₃)	99-101	T. chinensis	lv	g
taxachitriene B	$C_{32}H_{44}O_{13} \\$	636	Α	OH	CH ₂ OH	α-OAc	OAc	Ac	+29° (MeOH)	225-227	T. chinensis	lv	g
taxuspine X	$C_{41}H_{50}O_{14}$	766	Α	OAc	CH ₂ OAc	α-0-a	OAc	Ac	+31.7° (CHCl ₃)		T. cuspidata	st; 1.4×10^{-4}	h
(2'S,3'R)-5-(N,N-dimethyl- 3'-phenylisoseryl)- taxachitriene A	C ₄₇ H ₅₇ NO ₁₅	875	Α	OAc	CH ₂ OAc	α-O−b	OAc	Ac	+22.3° (CHCl ₃)	93-95	T. chinensis	bk, lv	i

^a Shi, Q.-W.; Oritani, T.; Sugiyama, T.; Kiyota, H. J. Nat. Prod. **1998**, 61, 1437–1440. ^bShi, Q.-W.; Oritani, T.; Sugiyama, T. Phytochemistry **1999**, 50, 633–636. Hosoyama, H.; Inubushi, A.; Katasui, T.; Shigemori, H.; Kobayashi, J. Tetrahedron **1996**, 52, 13145–13150. ^dZamir, L. O.; Zhou, Z. H.; Caron, G.; Nedea, M. E.; Sauriol, F.; Mamer, O. J. Chem. Soc., Chem. Commun. **1995**, 529–530. (Stereochemistry at C-5 established in 1998, see ref e). ^dZamir, L. O.; Zhang, J.; Kutterer, K.; Sauriol, F.; Mamer, O.; Khiat, A.; Boulanger, Y. Tetrahedron **1998**, 54, 15845–15860. ^fFang, W.-S.; Fang, Q.-C.; Liang, X.-T. Planta Med. **1996**, 62, 567–569. ^dFang, W.-S.; Fang, Q.-C.; Liang, X.-T.; Lu, Y.; Zheng, Q.-T. Tetrahedron **1995**, 51, 8483–8490. ^hShigemori, H.; Wang, X.-X.; Yoshida, N.; Kobayashi, J. Chem. Pharm. Bull. **1997**, 45, 1205–1208. ^dShi, Q.-W.; Oritani, T.; Sugiyama, T.; Kiyota, H. Planta Med. **1998**, 64, 766–769.

The importance of taxadiene synthase as the probable key rate-controlling enzyme for taxol biosynthesis led to a successful effort to purify it and to isolate and express its corresponding cDNA. The enzyme was localized primarily in the bark and adhering cambium cells of *T. brevifolia,* and was purified to homogeneity by chromatographic and electrophonetic methods. The purified enzyme was shown to be a monomer of about 79 kDa, and was also characterized with regard to pH optimum, kinetic constants, and metal ion cofactors, with Mg²⁺ being preferred.⁶⁵

The genes encoding taxadiene synthase were found by constructing DNA primers based on homologous sequences of terpenoid cyclases thought to be related to taxadiene synthase.⁶⁶ Amplification of two of these primers by the polymerase chain reaction (PCR) yielded a DNA fragment of 83 base pairs whose sequence was homologous to that of a cyclase. Screening of a cDNA library of *T. brevifolia* DNA led to the isolation of a hydridizing cDNA fragment which was then expressed in *Escherichia coli*. The protein produced by this engineered *E. coli* was the desired taxadiene synthase, which was found to have 862 amino acid residues corresponding to a molecular weight of about 98 000. Comparison with terpenoid synthases from higher plants, and especially with those of gymnosperms, showed

significant similarities, supporting the idea of a common ancestry for this class of enzymes.

Although earlier results suggested that the formation of taxa-4(5),11(12)-diene from geranylgeranyl diphosphate was the rate-limiting step in the biosynthesis of taxol,⁶⁴ a study of taxadiene synthase activity in *T. canadensis* suspension cell cultures showed that it exceeded that needed for the maximum rate of taxol accumulation in vivo.⁶⁷ This result suggests that the real rate-limiting step in taxol biosynthesis lies further down the biosynthetic pathway.

The conversion of taxa-4(5),11(12)-diene (**35**) to taxol requires that it undergo oxygenation at eight distinct sites. The fact that almost all known taxoids are oxygenated at C-5 suggested that this was the first oxygenation site, and so it proved to be. Incubation of $(20^{-2}H_3)$ taxa-4(5),11(12)-diene with microsomal preparations from extracts of *T. brevifolia* stems or *T. cuspidata* suspension-cultured cells gave a product in 4–14% yield which was identified as taxa-4(20),11(12)-dien- α -ol (**39**), in which the endocyclic 4(5)-double bond has migrated to the familiar 4(20)-exo position, with concomitant oxygenation at C-5.⁶⁸ The structure and stereochemistry of **39** were established unambiguously by synthesis, and the reaction was shown

		R ₆ R ₁ R ₁ R ₂		ÖR3	o 	́Р а	י h ל <u>ל</u>	D NI b	Me ₂ O	NMe ₂ Ph OH			
name	molecular formula	MW	R_1	\mathbf{R}_2	R_3	R_4	R_5	R_6	[α] _D	mp (°C)	plant source	plant part; % yield	refs
taxinine K	$C_{26}H_{36}O_8$	476	Н	OAc	Н	Н	OAc	OAc		167-168	T. cuspidata	lv; $2.0 imes 10^{-5}$	а
5-cinnamoylphototaxicin II	$C_{29}H_{36}O_{6}$	480	Н	OH	а	Н	OH	OH			T. baccata	lv	b
taxinine L	$C_{28}H_{38}O_9$	518	Н	OAc	Ac	Н	OAc	OAc		159-160	T. cuspidata	m lv; $ m 1.2 imes 10^{-5}$	а
5- <i>O</i> -cinnamoyl-9- <i>O</i> -acetyl- phototaxicin I	$C_{31}H_{38}O_8$	538	OH	OH	а	Н	OAc	OH	+3.2° (CH ₂ Cl ₂)	78-80	T. baccata	lv	С
2,9-diacetyl-5-cinnamoyl- phototaxicin II	$C_{33}H_{40}O_8$	564	Н	OAc	а	Н	OAc	OH	(- 2 - 2)		T. canadensis		d
2,10-diacetyl-5-cinnamoyl- phototaxicin II	$C_{33}H_{40}O_8$	564	Н	OAc	а	Н	OH	OAc			T. canadensis		d
2,10-diacetyl-5-cinnamoyl- 7β-hydroxyphototaxicin II	$C_{33}H_{40}O_9$	580	Η	OAc	а	OH	OH	OAc			T. canadensis		d
taxuspine C	$C_{35}H_{42}O_9$	606	Η	OAc	а	Η	OAc	OAc	+7.4° (CHCl ₃)		T. cuspidata	st; 1.7×10^{-3}	е
taxuspine H	$C_{37}H_{49}NO_9$	651	Н	OAc	b	Н	OAc	OAc	$+6.8^{\circ}$		T. cuspidata	st, lv	f
spicaledonine	C37H49NO10	667	Н	OAc	с	Н	OAc	OAc	+29° (CHCl ₃)		A. spicata	bk; $9.3 imes 10^{-5}$	g

^a Chiang, H. C.; Woods, M. C.; Nakadaira, Y.; Nakanishi, K. *Chem. Commun.* **1967**, 1201–1202. ^bSoto, J.; Castedo, L. *Phytochemistry* **1998**, *47*, 817–819. ^cAppendino, G.; Ozen, H. C.; Gariboldi, P.; Gabetta, B.; Bombardelli, E. *Fitoterapia* **1992**, *64*(S1), 47–51. Zamir, L. O.; Zhang, J.; Kutterer, K.; Sauriol, F.; Mamer, O.; Khiat, A.; Boulanger, Y. *Tetrahedron* **1998**, *54*, 15845–15860. ^eKobayashi, J.; Ogiwara, A.; Hosoyama, H.; Shigemori, H.; Yoshida, N.; Sasaki, T.; Li, Y.; Iwasaki, S.; Naito, M.; Tsuruo, T. *Tetrahedron* **1994**, *50*, 7401–7416. ^fKobayashi, J.; Inubushi, A.; Hosoyama, H.; Yoshida, N.; Sasaki, T.; Shigemori, H. *Tetrahedron* **1995**, *51*, 5971–5978. ^gEttouati, L.; Ahond, A.; Convert, O.; Poupat, C.; Potier, P. *Bull. Soc. Chim. Fr.* **1989**, *5*, 687–694.

Table 16. 2(3→20)-*abeo*-Taxanes

name	molecular formula	MW	R_1	R_2	R_3	R_4	[α] _D	mp (°C)	plant source	plant part; % yield	refs
deaminoacyltaxine A	C24H24O8	450	OAc	Н	OH	OH			T. baccata	lv	а
2-deacetyltaxine B	$C_{26}H_{36}O_9$	492	OH	Н	OAc	OAc	-218.2° (CHCl ₂)	178-179	T. yunnanensis	lv, st	b
2α,7β,13α-triacetoxy-5α,10β- dihydroxy-9-keto-2(3→20)- <i>abeo</i> -taxane	$C_{26}H_{36}O_9$	492	OAc	Н	OAc	OH	-147°	172-174	T. x media	lv; $5.0 imes 10^{-3}$	С
(taxuspine W)							-94.7 (MeOH)		T. cuspidata	st	d
taxine B	$C_{28}H_{38}O_{10}\\$	534	OAc	Η	OAc	OAc	-239.5° (CHCl ₃)	166-167	T. yunnanensis	lv, st	b
taxuspinanane H, deaminoacyl- cinnamovltaxine A	$C_{33}H_{40}O_9$	580	OAc	а	OH	OH	-42°		T. cuspidata	st; 6.0×10^{-5}	е
2-deacetyltaxine A	$C_{33}H_{45}NO_9$	599	OH	b	OH	OH	-106°		T. baccata	lv	f
(taxine C)							-73° (MeOH)	220-221	T. baccata	lv	g
taxuspine B	$C_{35}H_{42}O_{10} \\$	622	OAc	а	OAc	OH	-40.6°			st; 9 7 × 10 ^{−4}	h
taxine A	$C_{35}H_{47}O_{10}\\$	641	OAc	b	OH	OH	-140°	204-206	T. baccata	lv	<i>i, j</i>
7-O-acetyltaxine A	$C_{37}H_{49}NO_{11}$	683	OAc	b	OAc	OH	-96° (CHCl ₃)	178-180	T. baccata		g

^a Appendino, G.; Cravotto, G.; Enriu, R.; Jakupovic, J.; Gariboldi, P.; Gabetta, B.; Bombardelli, E. *Phytochemistry* **1994**, *36*, 407–411. ^bYue, Q.; Fang, Q.-C.; Liang, X.-T.; He, C.-H.; Jing, X.-L. *Planta Med.* **1995**, *61*, 375–377. ^cRao, K. V.; Reddy, G. C.; Juchum, J. *Phytochemistry* **1996**, *43*, 439–442. ^dHosoyama, H.; Inubushi, A.; Katasui, T.; Shigemori, H.; Kobayashi, J. *Tetrahedron* **1996**, *52*, 13145– 13150. ^cMorita, H.; Gonda, A.; Wei, L.; Yamamura, Y.; Wakabayashi, H.; Takeya, K.; Itokawa, H. *Phytochemistry* **1998**, *48*, 857–862. ^dPoupat, C.; Ahond, A.; Potier, P. *J. Nat. Prod.* **1994**, *57*, 1468–1469. ^dBarboni, L.; Gariboldi, P.; Appendino, G.; Enriu, R.; Gabetta, B.; Bombardelli, E. *Liebigs Ann.* **1995**, 345–349. ^hKobayashi, J.; Ogiwara, A.; Hosoyama, H.; Shigemori, H.; Yoshida, N.; Sasaki, T.; Li, Y.; Iwasaki, S.; Naito, M.; Tsuruo, T. *Tetrahedron* **1994**, *50*, 7401–7416. ^dGraf, E.; Bertholdt, H. *Pharmazeut. Zent.* **1957**, *96*, 385–395. ^jGraf, E.; Kirfel, A.; Wolff, G.-J.; Breitmaier, E. *Liebigs Ann. Chem.* **1982**, 376–381.

to be due to mixed function cytochrome P_{450} dependent hydroxylase with molecular oxygen as the oxidant.

Compound **39** was shown to be an intermediate on the pathway to taxol by incubation with *T. brevifolia* stem disks

Table 17. Miscellaneous Taxoids

L R = H

Ν	R	=	Н
0	R	=	b

name	molecular formula	MW	structure	[α] _D	mp (°C)	plant source	plant part; % yield	refs
4-deacetyltaxagifine III	$C_{22}H_{32}O_{10}$	456	L	+38.1° (MeOH)	221-223	T. chinensis	lv, st; 2.0 \times 10 ⁻⁴	а
taxezopidine A	$C_{26}H_{36}O_9$	492	Ν	$+5^{\circ}$		T. cuspidata	sd	b
taxagifine III	$C_{24}H_{34}O_{11} \\$	498	К	$+31.4^{\circ}$ (MeOH)	246-247	T. chinensis	lv, st; 1.5×10^{-4}	а, с
taxezopidine B	$C_{26}H_{38}O_{10}$	510	Μ	$+10.4^{\circ}$ (CHCl ₃)		T. cuspidata	sd, st; 2.5×10^{-4}	d
10,15-epoxy-11(15→1)- <i>abeo</i> -10- deacetylbaccatin III	$C_{29}H_{3}O_{49}$	526	Α	-18° (CH ₂ Cl ₂)		T. wallichiana	lv	е
wallifoliol	$C_{29}H_{34}O_{10}$	542	В	-10.8° (MeOH)		T. wallichiana	lv	f
decinnamoyltaxinine B 11,12-oxide	$C_{28}H_{38}O_{11}$	550	F		160	T. yunnanensis	lv, st	g
taxuspine K	$C_{30}H_{42}O_{13}$	610	E	+14° (CHCl ₃)		T. cuspidata	st; $1.7 imes10^{-4}$	h
taxezopidine J	$C_{35}H_{42}O_{10}$	622	0	+48° (CHCl ₃)		T. cuspidata	sd	i
taxuyunnanine E	$C_{33}H_{42}O_{12} \\$	630	D	+3.3° (CHCl ₃)		T. yunnanensis	rt	j
taxuchin A	$C_{32}H_{44}O_{14} \\$	652	J	-64.8° (MeOH)	248-250	T. chinensis	bk; 6.2×10^{-4}	k
13-deacetoxy-13,15-epoxy-11(15→1)- abeo-13-epi-baccatin VI	$C_{35}H_{42}O_{12} \\$	654	С	+23.9° (CHCl ₂)	150	T. x media	rt	1
taxezopidine K	$C_{37}H_{46}O_{12} \\$	682	н	+53° (CHCl ₂)		T. cuspidata	sd	i
taxuspine D	$C_{39}H_{48}O_{13}$	724	Ι	-32.2° (MeOH)		T. cuspidata	st; 4.4×10^{-3}	т
taxuspine P	$C_{41}H_{55}NO_{13}\\$	769	G	+32.7° (MeOH)		T. cuspidata	st	п

^a Zhang, Z.; Jia, Z. *Phytochemistry* **1991**, *30*, 2345–2348. ^bWang, X.-X.; Shigemori, H.; Kobayashi, J. *Tetrahedron Lett.* **1997**, *38*, 7587–7588. ^cZhang, Z. P.; Jia, Z. J. *Chin. Chem. Lett.* **1990**, *1*, 91–92. ^dWang, X.-X.; Shigemori, H.; Kobayashi, J. J. Nat. Prod. **1998**, *61*, 474–479. ^eAppendino, G.; Ozen, H. C.; Gariboldi, P.; Torregiani, E.; Gabetta, B.; Nizzola, R.; Bombardelli, E. J. *Chem. Soc., Perkin Trans I* **1993**, 1563–1566. ^fVander Velde, D. G.; Georg, G. I.; Gollapudi, S. R.; Jampani, H. B.; Liang, X.-Z.; Mitscher, L. A.; Ye, Q.-M. J. Nat. Prod. **1994**, *57*, 862–867. ^gYue, Q.; Fang, Q.-C.; Liang, X.-T. *Phytochemistry* **1996**, *43*, 639–642. ^hWang, X.-X.; Shigemori, H.; Kobayashi, J. *Tetrahedron* **1996**, *52*, 2337–2342. ^fShigemori, H.; Sakurai, C. A.; Hosoyama, H.; Kobayashi, A.; Kajiyama, S.; Kobayashi, J. *Tetrahedron* **1999**, *55*, 2553–2558. ^fZhang, H.; Tadeda, Y.; Sun, H. *Phytochemistry* **1995**, *39*, 1147–1151. ^kZhang, S.; Lee, C. T.-L.; Kashiwada, Y.; Zhang, D.-C.; McPhail, A. T.; Lee, K.-H. J. *Chem. Soc., Chem. Commun.* **1994**, 1561–1562. ^hBarboni, L.; Gariboldi, P.; Torregiani, E.; Appendino, G.; Cravotto, G.; Bombardelli, E.; Gabetta, B.; Viterbo, D. *J. Chem. Soc., Perkin Trans. I* **1994**, 3233–3238. ^mKobayashi, J.; Hosoyama, H.; Shigemori, H.; Koiso, Y.; Iwasaki, S. *Experientia* **1995**, *51*, 592–595. ⁿKobayashi, J.; Hosoyama, H.; Katsui, T.; Yoshida, N.; Shigemori, H. *Tetrahedron* **1996**, *52*, 5391–5396.

and isolation of taxol as well as other taxoids. Radiochemically guided fractionation of a large extract of dried *T. brevifolia* bark showed that **39** and its esters are present in the bark, but at low levels, again suggesting that this oxygenation step of taxol biosynthesis is a slow one.⁶⁸

The next step in the biosynthetic pathway is probably

acylation at C-5, and this reaction has been observed with a soluble enzyme preparation from *T. canadensis.* The enzyme preparation catalyzed the acetylation of **39** to **40** but did not catalyze the benzoylation of **39**.⁶⁹

Subsequent steps in the biosynthesis of taxol are as yet undetermined, but it has been predicted, based on the Scheme 4. Cyclization of Geranylgeranyl Diphosphate to a Tricyclic Taxoid Skeleton

relative frequency of oxygenation at various positions in the natural taxoids, that oxygenation occurs in the order C-5, then C-10, then C-2 and C-9, and finally C-1 and C-13. Incubation of either taxa-4(5),11(12)-diene or taxa-4(20), 11(12)-dien- 5α -ol as substrates with a microsomal system optimized to sustain cytochrome P-450 reactions gave products which have been tentatively identified as diol, triol, and tetraol metabolites, but their precise structures are not yet known.⁶⁹ It has however recently been shown that all the hydroxyl oxygen atoms (in bold in the structures below) of the taxoids taxayunnanine (41) and yunnanxane (42) arise from molecular oxygen, supporting the proposal that monooxygenase-catalyzed reactions play a central role in the biosynthesis of the taxane ring system.⁷⁰

Although the biosynthesis of taxol and related taxoids is beginning to be understood, there are many unanswered questions that remain to be addressed. One of these is the question of whether a chemical model can be developed for the cyclization of the proposed verticillyl cations (32 or 33) to a taxadiene such as 35. Initial attempts have so far proved interesting, even though the desired cyclization has not been achieved. Thus, the proposed bicyclic precursor 43 did not undergo cyclization to a taxoid skeleton on treatment with mercuric triflate but instead yielded the rearranged compound 44.71 It will be interesting to discover

whether other similar "biomimetic" precursors yield taxoidlike products on cyclization.

References and Notes

- Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325-2327.
- The chemical name taxol was assigned to compound 1 by Drs. Wall and Wani. The name Taxol was subsequently registered by Bristol-Myers Squibb Pharmaceuticals as the trademark for their pharmaceutical formulation of taxol, and the generic name paclitaxel was assigned to the chemical compound of structure **1**. Because of the historical nature of this review, the name taxol will be used for compound 1, since all publications before about 1994 use this name for this compound. No infringement of the Bristol-Myers Squibb trademark is intended by this usage.
- (3) For recent reviews on the clinical use of Taxol and Taxotere see: (a) Rowinsky, E. K. Annu. Rev. Med. **1997**, 48, 353–374. (b) Von Hoff, D. D. Semin. Oncol. **1997**, 24, 3–10. (c) DeFuria, M. D. Phytomedicine **1997**, 4, 273–282. (d) Eisenhauer, E. A.; Vermorken, J. B. Drugs **1998**, 55, 5-30.
- (4) Lucas, H. Arch. Pharm. (Weinheim, Ger.) 1856, 85, 145-149.
- Kingston, D. G. I.; Molinero, A. A.; Rimoldi, J. M. In *Progress in the Chemistry of Organic Natural Products*; Herz, W., Kirby, G. W., Moore, R. E., Steglich, W., Tamm, C., Eds.; Springer-Verlag: New York, 1993; Vol. 61, pp 1–206.
 (6) Kingston, D. G. I.; Jagtap, P. J.; Yuan, H.; Samala, L. Manuscript in
- preparation 1999.
- Appendino, G. *Nat. Prod. Rep.* **1995**, *12*, 349–360. Appendino, G. In *Alkaloids: Chemical and Biological Perspectives*, Pelletier, S. W., Ed., Wiley: New York, 1995; pp 237–268.
- (9)Appendino, G. In The Chemistry and Pharmacology of Taxol and its Derivatives, Farina, V., Ed.; Elsevier Science: New York, 1995; Vol. 22, pp 7-53.
- (10) Parmar, V. S.; Jha, A. In Studies in Natural Products Chemistry, Atta-
- (10) Farmar, V. S., Sha, R. Hondes in *Vandar Probability Optics Optics Optics*, 71(1), 111 (1998).
 (11) Parmar, V. S.; Jha, A.; Bisht, K. S.; Taneja, P.; Singh, S. K.; Kumar, A.; Poonam.; Jain, R.; Olsen, C. E. *Phytochemistry* **1999**, *50*, 1267– 1304
- (12) Das, B.; Rao, S. P.; Das, R. Planta Med. 1995, 61, 393–397.
 (13) Das, B.; Rao, S. P. Indian J. Chem., Sect. B 1996, 35B, 883–893.
- Appendino, G. In *The Chemistry and Pharmacology of Taxol and its Derivatives*; Farina, V., Ed.; Elsevier Science: New York, 1995; Vol. (14)22, pp 55-101
- (15)Snader, K. M. In Taxol: Science and Applications; Suffness, M., Ed.;
- (a) Wall, M. E. In *Chronicles of Drug Discovery*; Lednicer, D., Ed.;
 (a) Wall, M. E. In *Chronicles of Drug Discovery*; Lednicer, D., Ed.;
 American Chemical Society: Washington, DC; pp 1–33. (b) Wall, M. E.; Wani, M. C. *Cancer Res.* **1995**, *55*, 753–760. (16)
- (17) Huang, K.; Liang, J.; Gunatilaka, A. A. L. Zhongguo Yaoke Daxue Xuebao (J. Chin. Pharm. University) 1998, 29, 259–266.
- (18)Appendino, G.; Barboni, L.; Gariboldi, P.; Bombardelli, E.; Gabetta,
- B.; Viterbo, D. J. Chem. Soc., Chem. Commun. 1993, 1587–1589.
 (19) Krüssman, G. In Handbuch der Nadelgehölze; Paul Parey: Berlin, 1983; pp 317–333.
- Bryan-Brown, T. *Q. J. Pharm. Pharmacol.* **1932**, *5*, 205–219. Chattopadhyay, S. K.; Kulshrestha, M. K.; Saha, G. C.; Sharma, R. (20)
- P.; Kumar, S. Indian J. Chem. 1996, 35B, 508-509 (22)
- (a) Appendino, G.; Ozen, H. C.; Fenoglio, I.; Gariboldi, P.; Gabetta, B.; Bombardelli, E. Phytochem. 1993, 33, 1521-1523. (b) Appendino, G.; Cravotto, G.; Gariboldi, P.; Gabetta, B.; Bombardelli, E. Gazz. Chim. Ital. 1994, 124, 1-4.

- (23) Nakanishi, K.; Kurono, M.; Bhacca, N. S. Tetrahedron Lett. 1963, 30, 2161-2165.
- Lythgoe, B.; Nakanishi, K.; Uyeo, S. *Proc. Chem. Soc.* **1964**, 301(Sept.). Morita, H.; Gonda, A.; Wei, L.; Yamamura, Y.; Wakabayashi, H.; Takeya, K.; Itokawa, H. *Planta Med.* **1998**, *64*, 183–186. (25)
- (a) Fukushima, M.; Takeda, J.; Fukamiya, N.; Okano, M.; Tagahara, (26)K.; Zhang, S.-X.; Zhang, D.-C.; Lee, K.-H. J. Nat. Prod. 1999, 62, 140-142. (b) Shigemori, H.; Sakurai, C. A.; Hosoyama, H.; Kobayashi, A.; Kajiyama, Š.; Kobayashi, J. Tetrahedron 1999, 55, 2553–2558.
- (27) Chu, A.; Davin, L. B.; Zajicek, J.; Lewis, N. G.; Croteau, R. *Phytochemistry* 1993, *34*, 473–476.
 (28) Ma, W.; Park, G. L.; Gomez, G. A.; Nieder, M. H.; Adams, T. L.; Aynsley, J. S.; Sahai, O. P.; Smith, R. J.; Stahlhut, R. W.; Hylands,
- P. J.; Bitsch, F.; Shackleton, C. J. Nat. Frod. 1994, *57*, 116–122.
 (29) Samaranayake, G.; Magri, N. F.; Jitrangsri, C.; Kingston, D. G. I. J.
- Org. Chem. 1991, 56, 5114-5119.
- (30) (a) Chu, A.; Furlan, M.; Davin, L. B.; Zajicek, J.; Towers, G. H. N.; Soucy-Breau, C. M.; Rettig, S. J.; Croteau, R.; Lewis, N. G. *Phytochemistry* 1994, *36*, 975–985. (b) Appendino, G.; Barboni, L.; Gariboldi, P.; Bombardelli, E.; Gabetta, B.; Viterbo, D. *J. Chem. Soc.*, Chem. Commun. 1993, 1587-1589.
- (31) Li, B.; Tanaka, K.; Fuji, K.; Sun, H.; Taga, T. *Chem. Pharm. Bull.* **1993**, *41*, 1672–1673.
 (32) Doss, R. P.; Carney, J. R.; Shanks, J., C. H.; Williamson, R. T.; Chamberlain, J. D. J. Nat. Prod. **1997**, *60*, 1130–1133.
- (33) Morita, H.; Gonda, A.; Wei, L.; Yamamura, Y.; Wakabayashi, H.; Takeya, K.; Itokawa, H. *Planta Med.* **1998**, *64*, 183–186. (34)
- (35)
- We thank a referee for making this interesting suggestion. Zamir, L. O.; Zhang, J.; Kutterer, K.; Sauriol, F.; Mamer, O.; Khiat, A.; Boulanger, Y. *Tetrahedron* **1998**, *54*, 15845–15860. Appendino, G.; Ozen, H. C.; Gariboldi, P.; Gabetta, B.; Bombardelli, (36)E. Fitoterapia 1992, 64(S1), 47-51.
- Appendino, G.; Cravotto, G.; Enriu, R.; Jakupovic, J.; Gariboldi, P.; (37)
- Gabetta, B.; Bombardelli, E. *Phytochemistry* **1994**, *36*, 407–411. Barboni, L.; Gariboldi, P.; Torregiani, E.; Appendino, G.; Cravotto, (38)G.; Bombardelli, E.; Gabetta, B.; Viterbo, D. *J. Chem. Soc., Perkin Trans.* 1 **1994**, 3233–3238.
- (39) Zhang, S.; Lee, C. T.-L.; Kashiwada, Y.; Zhang, D.-C.; McPhail, A. T.; Lee, K.-H. J. Chem. Soc., Chem. Commun. 1994, 1561–1562.
- Kobayashi, J.; Hosoyama, H.; Shigemori, H.; Koiso, Y.; Iwasaki, S. *Experientia* **1995**, *51*, 592–595.
- Appendino, G.; Jakupovic, J.; Varese, M.; Bombardelli, E. *Tetrahedron Lett.* **1996**, *37*, 727–730. (41)
- (42) Hanson, R. L.; Wasylyk, J. M.; Nanduri, V. B.; Cazzulino, D. L.; Patel, R. N.; Szarka, L. J. *J. Biol. Chem.* **1994**, *269*, 22145–22149.
 (43) Hanson, R. L.; Howell, J. M.; Brzozowski, D. B.; Sullivan, S. A.; Patel, J. M.;
- R. N.; Szarka, L. J. *Biotechnol. Appl. Biochem.* 1997, 26, 153–158.
 (44) Patel, R. N. Annu. Rev. Microbiol. 1998, 98, 361–395.
 (45) Hamada, H.; Sanada, K.; Furuya, T.; Kawabe, S.; Jaziri, M. Nat. Prod. Lett. 1996, 9, 47-52.
- Lett. 1990, 9, 41-32.
 (46) Zhang, J.; Zhang, L.; Wang, X.; Qiu, D.; Sun, D.; Gu, J.; Fang, Q. J. Nat. Prod. 1998, 61, 497-500.
 (47) (a) Miller, R. W.; Powell, R. G.; Smith, C. R., Jr.; Arnold, E.; Clardy, J. J. Org. Chem. 1981, 46, 1469-1474. (b) McLaughlin, J. L.; Miller, R. W.; Powell, R. G.; Smith, C. R., Jr. J. Nat. Prod. 1981, 44, 312-210. (c) Cheviller M. C. P. Birghild, J. M. Vierette, D. C. A. 1997, 140-210. (c) Cheviller M. C. P. Birghild, J. M. Vierette, D. C. M. 1997, 140-210. (c) Cheviller M. A. 100-1000. (c) Cheviller M. A. 100-1000. (c) Cheviller M. A. 100-1000. (c) Cheviller M. 1000. (c) Chevil 319. (c) Chaudhary, A. G.; Rimoldi, J. M.; Kingston, D. G. I. J. Org. Chem. 1993, 58, 3798-3799.

- (48) Xu, H.; Cheng, K.-D.; Fang, W. S.; Zhu, P.; Meng, C. Chin. Chem. Lett. 1997. 8. 1055-1056.
- (49) Hu, S.; Sun, D.; Tian, X.; Fang, Q. Tetrahedron Lett. 1997, 38, 2721-2724
- (50)(a) Hu, S.; Tian, X.; Zhu, W.; Fang, Q. Tetrahedron 1996, 52, 8739-8746. (b) Hu, S.; Tian, X.; Zhu, W.; Fang, Q. J. Nat. Prod. 1996, 59, 1006 - 1009.
- (51) Stierle, A.; Strobel, G.; Stierle, D. Science 1993, 260, 214-216.
- (52) Strobel, G. A.; Hess, W. M.; Ford, E.; Sidhu, R. S.; Yang, X. J. Ind. Microbiol. 1996, 17, 417-423.
- (53) Dahiya, J. S. PCT Int. Appl. WO 96 32,490, 17 Oct 1996, US Appl. 422,410, 14 Apr 1995; 30 pp (Chem. Abstr. 1997, 125, 326527).
- Yukimune, Y.; Tabata, H.; Higashi, Y.; Hara, Y. Nat. Biotechnol. 1996, (54)14. 1129-1132.
- (55) Fett-Neto, A. G.; DiCosmo, F. In Plant Cell Culture Secondary Metabolism: Toward Industrial Application; DiCosmo, F., Misawa, M., Eds.; CRC Press: Boca Raton, FL, 1996; pp 139-166.
- (56) Zamir, L. O.; Nedea, M. E.; Garneau, F. X. Tetrahedron Lett. 1992, 33, 5235-5236.
- (57) (a) Fleming, P. E.; Mocek, U.; Floss, H. G. J. Am. Chem. Soc. 1993, 115, 805-807. (b) Fleming, P. E.; Floss, H. G.; Haertel, M.; Knaggs, A. R.; Lansing, A.; Mocek, U.; Walker, K. D. Pure Appl. Chem. 1994, *66*, 2045–2048.
- (58) Fleming, P. E.; Knaggs, A. R.; He, X.-G.; Mocek, U.; Floss, H. G. J. Am. Chem. Soc. 1994, 116, 4137-4138.
- (59) Zocher, R.; Weckwerth, W.; Hacker, C.; Kwammer, B.; Hornbogen, T.; Ewald, D. Biochem. Biophys. Res. Commun. 1996, 229, 16-20.
- (60) Menhard, B.; Zenk, M. H. Phytochemistry 1999, 50, 763-774.
- (61) Eisenreich, W.; Menhard, B.; Hylands, P. J.; Zenk, M. H.; Bacher, A. Proc. Natl. Acad. Sci. 1996, 93, 6431-6436.
- (62) Rohmer, M.; Knani, M.; Simonin, P.; Sutter, B.; Sahn, H. Biochem. J. 1993, 295, 517-524.
- (63) Koepp, A. E.; Hezari, M.; Zajicek, J.; Vogel, B. S.; LaFever, R. E.; Lewis, N. G.; Croteau, R. J. Biol. Chem. 1995, 270, 8686-8690.
- (64) Lin, X.; Hezari, M.; Hoepp, A. E.; Floss, H. G.; Croteau, R. Biochemistry 1996, 35, 2968-2977.
- (65) Hezari, M.; Lewis, N. G.; Croteau, R. Arch. Biochem. Biophys. 1995, 322 437 - 444
- (66) Wildung, M. R.; Croteau, R. J. Biol. Chem. 1996, 271, 9201-9204.
- (67)Hezari, M.; Ketchun, R. E. B.; Gibson, D. M.; Croteau, R. Arch. Biochem. Biophys. 1997, 337, 185-190.
- (68) Hefner, J.; Rubenstein, S. M.; Ketchum, R. E.; Gibson, D. M.; Williams, R. M.; Croteau, R. Chem. Biol. 1996, 3, 479-489.
- (69)Walker, K.; Ketchum, R. E. B.; Hezaari, M.; Gatfield, D.; Gleniowski, M.; Barthol, A.; Croteau, R. Arch. Biochem. Biophys. 1999, 364, 273-279
- (70) Eisenreich, W.; Menhard, B.; Lee, M. S.; Zenk, M. H.; Bacher, A. J. Am. Chem. Soc. 1998, 120, 9694-9695.
- Nishizawa, M.; Imagawa, H.; Hyodo, I.; Takeji, M.; Morikuni, E.; Asoh, K.; Yamada, H. Tetrahedron Lett. 1998, 39, 389-392.

NP990176I